Refine Your Search

Topic

Search Results

Technical Paper

Influence of Operating Conditions on Output, Exhaust Emission and Combustion Variation of Low Compression Ratio Methanol Injection Engines

1991-02-01
910866
In this study, accordingly, methanol fuel was supplied in suction pipe with carburetor and with electronically-controlled fuel injector (EFI), which located in front of the suction valve, to clear experimentally the influence of various factors, such as the methanol-gasoline ratio (M/F), the difference in fuel feed system, the number of times of injection [ni], the injection timing (θinj), the engine speed (N), the volumetric efficiency (η v), the suction pipe wall temperature (tw), the water content in fuel (yw) etc., on the engine performance (the output and the thermal efficiency), the exhaust characteristics (NOx, CO, UBF and HCHO concentrations) and combustion variation as well as obtaining a guideline to establish the optimum condition. The authors will be report about the results of above-mentioned.
Technical Paper

A Prechamber-type Compression Ingition Engine Operated by Composite Fuels

1991-09-01
911768
Reduction of soot and NOx emissions from a prechamber-type diesel engine is studied by employing both chemical and physical aspects of the fuel and induction method. Fuel modification was performed to produce several forms of composite fuel: solution of alcohol and gas oil (JIS No. 1); emulsification and mixture of methyl alcohol-gas oil prepared by off- and in-line fuel systems; and separate injection of fuels into the pre- and main-chamber.
Technical Paper

A Study of Compression Ignition Engine Operated by Various Biomass Fuels

1991-10-01
912335
The engine performance, combustion characteristics and exhaust emission of pre-chamber type compression ignition engine operated by various biomass fuels were investigated experimentally. The biomass fuel investigated in this report are an emulsified fuel made with gas oil and hydrous ethanol or hydrous methanol, an emulsified fuel made with hydrous methanol and rape-seed oil, and neat rape-seed oil, and gas oil. There are small deviations of the experimental results between the biomass fuels, however, the general tendencies of the engine performances and exhaust gas characteristics operated by biomass fuels are as follows: The brake thermal efficiency during biomass fuel operation becomes maximum at a certain injection timing as well as those of the gas oil operation. And this injection timing is advanced with increasing the biomass content in the fuel.
Technical Paper

Evaluation of Medium Duty DME Truck Performance -Field Test Results and PM Characteristics-

2007-01-23
2007-01-0032
The performance of a medium duty DME truck was evaluated by field tests and engine bench tests. The DME vehicle was given a public license plate on October 2004, after which running tests were continued on public roads and a test course. The DME vehicle could run the whole distance, about 500 km, without refueling. The average diesel equivalent fuel consumption of the fully loaded DME truck was 5.75 km/l, running at 80 km/h on public highways. Remedying several malfunctions that occurred in the power-train subsystems enhanced the vehicle performance and operation. The DME vehicle accumulated 13,000 km as of August, 2006 with no observed durability trouble of the fuel injection pump. Disassembly and inspection of the fuel injectors after 7,700 km operation revealed a few differences in the nozzle tip and the needle compared to diesel fuel operation. However, the injectors were used again after cleanup.
Technical Paper

Engine Performance and Exhaust Gas Characteristics of a Compression Ignition Engine Operated with DME Blended Gas Oil Fuel

1998-10-19
982538
Dimethyl Ether (DME) is a promising new alternative fuel for compression ignition DI engines. However, some problems arise from the poor lubricity of DME. Breakdown of the film bearing between needle and sleeve of the injector can lead to mechanical wear and leakage, a problem that is not mitigated easily. For example, the application of returning the leakage to fuel tank could raise a back pressure on the injection needle. This pressure can affect injection rate and consequently engine performance. In this study, fuels based on various DME to gas oil (diesel fuel) ratios were investigated, in part. Physical and chemical properties of DME and gas oil are shown to lead to mutual solubility at any ratio. Blended fuels have a higher lubricity compared with pure’ DME and a better injection spray compared with pure gas oil.
Technical Paper

Investigation of Fuel Impurities Effect on DME Powered Diesel Engine System

2010-04-12
2010-01-0468
DME as a fuel for compression ignition (diesel) engines has been actively studied for about ten years due to its characteristically low pollution and reputation as a “smokeless fuel”. During this time, the practical application is taking shape based on necessary tasks such as analysis of injection and combustion, engine performance, and development of experimental vehicles. At this moment, standardization of DME as a fuel was started under ISO in 2007. There are concerns regarding the impurities in DME regarding the mixing during production and distribution as well as their effect on additives for lubricity and odor. In this report, the effect of DME fuel impurities on performance of a DME powered diesel engine was investigated. The platform was a DME engine with common-rail fuel injection and was evaluated under partial load stable mode and Japanese transient mode (JE05) testing parameters.
Technical Paper

Improvement of Thermal Efficiency Using Fuel Reforming in SI Engine

2010-04-12
2010-01-0584
Hydrogen produced from regenerative sources has the potential to be a sustainable substitute for fossil fuels. A hydrogen internal combustion engine has good combustion characteristics, such as higher flame propagation velocity, shorter quenching distance, and higher thermal conductivity compared with hydrocarbon fuel. However, storing hydrogen is problematic since the energy density is low. Hydrogen can be chemically stored as a hydrocarbon fuel. In particular, an organic hydride can easily generate hydrogen through use of a catalyst. Additionally, it has an advantage in hydrogen transportation due to its liquid form at room temperature and pressure. We examined the application of an organic hydride in a spark ignition (SI) engine. We used methylcyclohexane (MCH) as an organic hydride from which hydrogen and toluene (TOL) can be reformed. First, the theoretical thermal efficiency was examined when hydrogen and TOL were supplied to an SI engine.
Technical Paper

A Study of Dimethyl Ether(DME) Flow in Diesel Nozzle

2004-03-08
2004-01-0081
Dimethyl ether (DME) holds promise as an alternative to diesel fuel. However, its physical properties are not similar to those of conventional diesel fuel. The P-V, bulk modulus and viscosity of DME are derived as a function of temperature and pressure. As a result, the Weber and Reynolds number of DME is very large as compared with that of diesel fuel. So, the spray characteristics of DME are not those of a liquid spray but similar to those of gas spray. The spray formation is strongly affected by the fuel flow in the nozzle. The Computational Fluid Dynamics (CFD) and experiments are examined to analyze the fuel flow in the nozzle. The DME physical properties make some difference to the flow in the nozzle, in comparison with those of diesel. As a CFD result, cavitation in the injection nozzle is more frequent with DME than with diesel oil. From experimental results, the temperature in the nozzle sac is higher with DME than with diesel oil.
Technical Paper

Spectroscopic Analysis of Combustion in the DME Diesel Engine

2004-03-08
2004-01-0089
For better understanding of the combustion characteristics in a direct injection dimethyl ether (DME) engine, the chemiluminescences of a burner flame and in-cylinder flame were analyzed using the spectroscopic method. The emission intensities of chemiluminescences were measured by a photomultiplier after passing through a monochrome-spectrometer. For the burner flame, line spectra were found nearby the wave length of 310 nm, 430 nm and 515 nm, arising from OH, CH and C2 radicals, respectively. For the in-cylinder flame, a strong continuous spectrum was found from 340 nm wave length to 550 nm. Line spectra were also detected nearby 310 nm, 395 nm and 430 nm, arising from OH, HCHO, and C2 radicals, respectively, partially overlapping with the continuous spectrum. Of these line spectra, 310 nm of OH radical did not overlapped with the continuous spectrum.
Technical Paper

Effects of Fuel Injection Conditions on Driving Performance of a DME Diesel Vehicle

2003-10-27
2003-01-3193
Since dimethyl ether (DME) is a synthetic fuel, it is possible to make it from natural gas, coal and biomass. It is a low-emission, oxygenated fuel, which does not generate soot in the exhaust. Therefore, it has recently been identified as a possible replacement for diesel fuel. In Japan, the new short-term emissions regulations will be enforced beginning in 2003, and the long-term emissions regulations are scheduled to be enforced in 2005. In order to meet these more stringent emissions regulations, existing diesel engines would not be as widely used in the near future as they currently are. This will thus bring about a more widespread use of DME engines due to their low emissions potential. Moreover, when the modification of existing diesel engines into DME engines is available at a moderate cost, the wider use of DME engines can be expected. This study targeted development and application of DME engine technology for diesel engine retrofit, in a used diesel vehicle.
Technical Paper

Chemiluminescence Analysis from In-Cylinder Combustion of a DME-Fueled DI Diesel Engine

2003-10-27
2003-01-3192
To date, the DME combustion mechanism has been investigated by in-cylinder gas sampling, numerical calculations and observation of combustion radicals. It has been possible to quantify the emission intensities of in-cylinder combustion using a monochromator, and to observe the emitting species as images by using band-pass filters. However, the complete band images were not observed since the broadband (thermal) intensity may be stronger than band spectra intensities. Emission intensities of DME combustion radicals from a pre-mixed burner flame have been measured using a spectroscope and photomultiplier. Results were compared to other fuels, such as n-butane and methane, then, in this study, to better understand the combustion characteristics of DME, emission intensities near CH bands of an actual DI diesel engine fueled with DME were measured, and band spectra emitted from the engine were defined. Near TDC, emission intensities did not vary with wavelength.
Technical Paper

Simultaneous Observation of Droplets and Evaporated State of Liquid Butane and DME at Low Injection Pressure

2002-05-06
2002-01-1627
Alternative fuels such as butane and DME have different properties including high vapor pressure, low viscosity, and low surface tension, compared to other conventional fuels. These properties may lead to different atomization characteristics such as liquid core breakup, droplet size distribution, and evaporation process. To investigate these effects, a method based on shadowgraph technique to take spray images for droplets and surrounding gas was tested and evaluated. Experiments were performed at low injection pressure for early stage direct injection. It could be concluded from the results that the proposed method could be used to investigate the structure of evaporating spray, and the vapor layer around the spray core could be correlated to the turbulent mixing length for both of butane and DME sprays by observing vapor and spray core.
Technical Paper

CFD Study of an LPG DI SI Engine for Heavy Duty Vehicles

2002-05-06
2002-01-1648
This work aimed to develop an LPG fueled direct injection SI engine, especially in order to improve the exhaust emission quality while maintaining high thermal efficiency comparable to a conventional engine. In-cylinder direct injection engines developed recently worldwide utilizes the stratified charge formation technique at low load, whereas at high load, a close-to-homogeneous charge is formed. Thus, compared to a conventional port injection engine, a significant improvement of fuel consumption and power can be achieved. To implement such a combustion strategy, the stratification of mixture charge is very important, and an understanding of its combustion process is also inevitably necessary. In this work, a numerical simulation was performed using a CFD code (KIVA-3), where the shape of a combustion chamber, swirl intensity, injection timing and duration, etc. were varied and their effects on the mixture formation and combustion process were investigated.
Technical Paper

Atomization Characteristics for Various Ambient Pressure of Dimethyl Ether (DME)

2002-05-06
2002-01-1711
Recently, dimethyl ether (DME) has been attracting much attention as a clean alternative fuel, since the thermal efficiency of DME powered diesel engine is comparable to diesel fuel operation and soot free combustion can be achieved. In this experiment, the effect of ambient pressure on DME spray was investigated with observation of droplet size such as Sauter mean diameter (SMD) by the shadowgraph and image processing method. The higher ambient pressure obstructs the growth of DME spray, therefore faster breakup was occurred, and liquid column was thicker with increasing the ambient pressure. Then engine performances and exhaust emissions characteristics of DME diesel engine were investigated with various compression ratios. The minimum compression ratio for the easy start and stable operation was obtained at compression ratio of about 12.
Technical Paper

Investigation of the Combustion Process of a DI CI Engine Fueled with Dimethyl Ether

2001-09-24
2001-01-3504
Dimethyl Ether (DME) is one of the major candidates for the next generation fuel for compression ignition (CI) engines. It has good self-ignitability and would not produce particulate, even at rich conditions. DME has proved to be able to apply to ordinary diesel engines with minimal modifications, but its combustion characteristics are not completely understood. In this study, the behavior of a DME spray and combustion process of a direct injection CI engine fueled with DME was investigated by combustion observation and in-cylinder gas sampling. To distinguish evaporated and non-evaporated zones of a spray, direct and schlieren imaging were carried out. The sampled gas from a DME spray was analyzed by gas chromatography, and the major intermediate product histories during ignition period were analyzed.
Technical Paper

Spray Characteristics of LPG Direct Injection Diesel Engine

2003-03-03
2003-01-0764
In this study, spray images of LPG Blended Fuels (LBF) for DI diesel engines were observed using a constant volume chamber at high ambient temperature and pressure, and the spray characteristics of the fuel were investigated. The LBF spray started to vaporize at the injector tip and the outer downstream regions of the spray, like diesel fuel, because of the high temperature at these areas. There were more vaporized areas compared to diesel fuel. Sufficient fuel injection volume and volatility of LBF resulted in good fuel-air mixture, then, THC emissions decreased compared to diesel fuel at high load engine test conditions. Butane spray image could not be observed at the injector tip. It seems that the high temperature of the injector tip caused the butane spray to vaporize rapidly. Spray tip penetration with LBF and butane were equal or greater than with diesel fuel. The high volatility of LBF and butane had no noticeable effect on spray penetration.
Technical Paper

Spray and Exhaust Emission Characteristics of a Biodiesel Engine Operating with the Blend of Plant Oil and DME

2002-03-04
2002-01-0864
As an effective method to solve the global warming and the energy crisis, the research has been carried out for the adaptability of plant oil as an alternative fuel for Diesel engine. But there are the problems of engine performance and exhaust emissions owing to the high viscosity and low volatility, when the plant oil is used as a fuel. In order to eliminate these problems, spray characteristics of the DME (Dimethyl ether) blended plant oil has been examined by using the image processing based on the shadowgraph methodology. Results show that the optimum mixing ratio of the blend is about 50:50 (by weight %). Thereafter, experiments have been conducted with a DI Diesel engine using the DME blended plant oil, and compared the exhaust emissions with Diesel, DME and transesterified fuel operation. From the results, it can be concluded that the combustion characteristics of DME blended plant oil are comparable to Diesel fuel.
Technical Paper

Development of Retrofit DME Diesel Engine Operating with Rotary Distributor Fuel Injection Pump

2003-03-03
2003-01-0758
In order to reduce environmental disruption due to exhaust PM and NOx emissions from diesel engines of dimethyl ether (DME) has been proposed the use for the next generation vehicles, because the discharge of the atmospheric pollutants is less. In this study, DME is used to fuel a retrofit type diesel engine, and operational tests were carried out using a rotary distributor fuel injection pump. In this experiment, comparison and examination of the effects of fuel injection pressure, nozzle hole diameter, and injection timing. When using DME as an alternative fuel, the fuel temperature affects engine operation. And diameter of the injector nozzle hole and larger injection quantity is regarded as factors affecting the improvement in engine performance. In addition, for understanding the DME spray in the cylinder, DME was sprayed in a constant volume chamber where atmospheric temperature and pressure increased simultaneously, and the result is compared and examined with diesel fuel.
Technical Paper

A Study of Low Critical Fuel Flow in Nozzle

2003-05-19
2003-01-1928
Dimethyl ether(DME) is a promising new alternative fuel not only diesel fuel but also power generation, fuel cell and city gas. However, the physical properties are not similar to those of conventional diesel fuel. The P-v, bulk modulus and viscosity of DME are derived as a function of temperature and pressure. As a Result, the Weber and Reynolds number of DME is very large as compared with that of diesel fuel. So, the spray characteristics of DME is not the liquid spray but similar to that of gas spray. The spray formation is strongly affected by the fuel flow in the nozzle. The Computational Fluid Dynamics (CFD) and the experiments are examined to analyze the fuel flow in the nozzle. The DME physical properties make some difference of the flow in the nozzle, comparing with those of diesel. As a CFD result, cavitation in the injection nozzle is more frequent with DME than with diesel oil.
Technical Paper

Characteristics of Spray Formation and Combustion in Diesel Engines Operated with Dimethyl Ether

2003-05-19
2003-01-1925
Characteristics of dimethyl ether spray formation were observed using schlieren photography, and the combustion characteristics and performance of a dimethyl ether-operated diesel engine were investigated. Accordingly, this paper describes the basic characteristics of engine performance and the potential for decreased exhaust emissions, as well as discussing problems concerning the practical application of dimethyl ether-operated diesel engines.
X