Refine Your Search

Affiliation

Search Results

Technical Paper

A Study of PM Emission Characteristics of Diesel Vehicle Fueled with GTL

2007-01-23
2007-01-0028
In this study, diesel exhaust emission characteristics were investigated as GTL (Gas To Liquid) fuel was applied to a heavy-duty diesel truck which had been developed to match a Japanese new long-term exhaust emission regulation (NOx < 2.0 g/kWh, PM < 0.027 g/kWh). The results in this study show that although the test vehicle has advanced technologies (e.g. high pressure fuel injection, oxidation catalyst, and urea-SCR aftertreatment system, etc.) which are applied to reduce diesel emissions, the neat GTL fuel has a great advantage to reduce particulate matter emissions and poly aromatic hydrocarbons. And regarding nano-size PM emissions, nuclei mode particles emitted during idling are significantly decreased by using the GTL fuel.
Technical Paper

Flame Front Speed of a Decane Cloud under Microgravity Conditions

1998-10-19
982566
In this study, a piezo disk was used to generate a cloud of n-decane fuel drops, which were mixed with air, then carried into a combustion chamber and ignited by a platinum wire. Microgravity data obtained at the Japan Microgravity Center (JAMIC) were compared to normal gravity data, all at 1Atm pressure and 20+/-1°C initial temperature. Under normal gravity the lean limit was found to be 7.6x106/mm3 (Φ = 1.0), and from this point the flame front speed steadily increased from 20cm/s up to a maximum flame front speed of 210cm/s at a fuel drop density of about 14x106/mm3 (Φ = 1.85). Microgravity data showed a much richer lean limit - about 14.5x106/mm3 (Φ = 1.9), and the flame front speed did not gradually rise to a peak value. Instead, the measurements indicated a peak value of about 250cm/s, with a steep increase followed by a gradual decrease at richer fuel air ratios. A cellular flame structure appeared, and the cell size decreased as the mixture density increased.
Technical Paper

Flame Speed Measurements and Predictions of Propane, Butane and Autogas at High Pressures

1998-10-19
982448
Flame propagation at elevated pressures for propane, butane and autogas (20% propane and 80% butane by mass) were investigated. Flame arrival time was measured using ionization probes installed along the wall of a cylindrical combustion chamber. Flame radius was also measured using a laser schlieren technique. Results showed that the flame front speed decreased with increasing initial pressure, and the initial pressure effect on maximum flame front speed was correlated by the relationship Sf = 175·pi-0.15 (for Φ=1.0). Characteristics of flame front speed between propane, butane and autogas were very similar, whereas at fuel-rich conditions flame front speed of butane and autogas were higher than that of propane. A thermodynamic model to predict flame radius and speed as a function of time was derived and tested using measured pressure-time curves.
Technical Paper

Investigation of the Combustion Mechanism of a Fuel Droplet Cloud by Numerical Simulation

1998-10-19
982615
The combustion mechanism of a fuel droplet cloud was studied by numerical simulation. We investigated how the flame front speed and combustion products changed depending on the equivalence ratio and initial temperature. Modeling was performed using the KIVA-III software package, a three dimensional analysis software used mainly for internal combustion engine applications. The computational domain was a horizontal 1x1x100 cell sector of a spherical combustion chamber and the fuel was n-decane. Results showed that when all the fuel droplets were assumed to have evaporated, the flame front speed increased from 28 cm/s to 152 cm/s as the equivalence ratio increased. The maximum flame front speed was reached at ϕ=1.1, beyond which it decreased (at richer overall equivalence ratios). With a constant equivalence ratio, the flame front speed decreased near the outside region, because the unburned gas was compressed by the expanding burned gas.
Technical Paper

Numerical simulation of hollow-cone sprays in gasoline direct-injection engines

2000-06-12
2000-05-0141
The main purpose of this study is to reveal the mechanism of stratified- mixture formation in gasoline direct-injection engines. So far the authors have developed a computer code "GTT" for numerically simulating the fuel spray behavior in fuel injection engines, and have proposed the physical models for droplet breakup, spray impingement and liquid film formation on a wall, and evaporation of a droplet and liquid film, which have been applied mainly to the sprays injected from hole nozzles for diesel engines. In this study, in order to numerically simulate the hollow-cone sprays injected from a swirl injector for gasoline direct-injection engines, a physical model for hollow-cone sprays has been proposed. The injection boundary condition and the model coefficients for the droplet breakup model (improved wave breakup model) have been determined appropriately.
Technical Paper

Lubricity of Liquefied Gas - Assessment of the Various Pressure and Temperature High-Frequency Reciprocating Rig (VPT-HFRR) - LPG Blended Fuel for Diesel Engine

2003-10-27
2003-01-3092
In this research, a test apparatus (VPT-HFRR) for evaluating lubricity was manufactured at an arbitrary pressure according to the lubricity test method (HFRR) for diesel fuel. The lubricity of LPG blended fuel (LBF) for diesel engines was examined using VPT-HFRR., This was a value close to that of diesel fuel, and when a suitable lubricity had been maintained, it was checked. Prototype trucks were manufactured and their durability was examined. After a run of 70,000km or more, no serious trouble had occurred, and when LBF was maintained at a suitable lubricity, it was checked.
Technical Paper

Chemiluminescence Analysis from In-Cylinder Combustion of a DME-Fueled DI Diesel Engine

2003-10-27
2003-01-3192
To date, the DME combustion mechanism has been investigated by in-cylinder gas sampling, numerical calculations and observation of combustion radicals. It has been possible to quantify the emission intensities of in-cylinder combustion using a monochromator, and to observe the emitting species as images by using band-pass filters. However, the complete band images were not observed since the broadband (thermal) intensity may be stronger than band spectra intensities. Emission intensities of DME combustion radicals from a pre-mixed burner flame have been measured using a spectroscope and photomultiplier. Results were compared to other fuels, such as n-butane and methane, then, in this study, to better understand the combustion characteristics of DME, emission intensities near CH bands of an actual DI diesel engine fueled with DME were measured, and band spectra emitted from the engine were defined. Near TDC, emission intensities did not vary with wavelength.
Technical Paper

Lubricity of Liquefied Gas Assessment of Multi-Pressure/Temperature High-Frequency Reciprocating Rig (MPT-HFRR) -DME Fuel for Diesel

2004-06-08
2004-01-1865
In this study, a MPT-HFRR (Multi-Pressure/Temperature High-Frequency Reciprocating Rig) was manufactured based on a diesel fuel lubricity test apparatus. The MPT-HFRR was designed to be used for conventional test methods as well as for liquefied gas fuel tests. Lubricity tests performed on a calibration standard sample under both atmospheric pressure and high pressure produced essentially constant values, so it was determined that this apparatus could be used for assessing the lubricity of fuel. Using this apparatus, the improvement of lubricity due to the addition of a DME (Dimethyl Ether) fuel additive was investigated. It was found that when 50ppm or more of a fatty acid lubricity improver was added, the wear scar diameter converged to 400μm or less, and a value close to the measured result for Diesel fuel was obtained. The lubricity obtained was considered to be generally satisfactory.
Technical Paper

CFD Study of an LPG DI SI Engine for Heavy Duty Vehicles

2002-05-06
2002-01-1648
This work aimed to develop an LPG fueled direct injection SI engine, especially in order to improve the exhaust emission quality while maintaining high thermal efficiency comparable to a conventional engine. In-cylinder direct injection engines developed recently worldwide utilizes the stratified charge formation technique at low load, whereas at high load, a close-to-homogeneous charge is formed. Thus, compared to a conventional port injection engine, a significant improvement of fuel consumption and power can be achieved. To implement such a combustion strategy, the stratification of mixture charge is very important, and an understanding of its combustion process is also inevitably necessary. In this work, a numerical simulation was performed using a CFD code (KIVA-3), where the shape of a combustion chamber, swirl intensity, injection timing and duration, etc. were varied and their effects on the mixture formation and combustion process were investigated.
Technical Paper

Spectroscopic Investigation of the Combustion Process in DME Compression Ignition Engine

2002-05-06
2002-01-1707
For better understanding of the in-cylinder combustion characteristics of DME, combustion radicals of a direct injection DME-Fueled compression ignition engine were observed using a spectroscopic method. In this initial report, the emission intensity of OH, CH, CHO, C2 and NO radicals was measured using a photomultiplier. These radicals could be measured with wavelength resolution (half-width) as about 3.3 nm. OH and CHO radicals appeared first, and then CH radical emission was detected. After that, the combustion radicals were observed using a high-speed image intensified video camera with band-pass filter. All of radicals were able to observe as images with half-width as 6 or about 10 nm. Rich DME leaked from nozzle was burning at the end of combustion. Therefore, the second light emission of C2 radical after the main combustion was observed.
Technical Paper

Atomization Characteristics for Various Ambient Pressure of Dimethyl Ether (DME)

2002-05-06
2002-01-1711
Recently, dimethyl ether (DME) has been attracting much attention as a clean alternative fuel, since the thermal efficiency of DME powered diesel engine is comparable to diesel fuel operation and soot free combustion can be achieved. In this experiment, the effect of ambient pressure on DME spray was investigated with observation of droplet size such as Sauter mean diameter (SMD) by the shadowgraph and image processing method. The higher ambient pressure obstructs the growth of DME spray, therefore faster breakup was occurred, and liquid column was thicker with increasing the ambient pressure. Then engine performances and exhaust emissions characteristics of DME diesel engine were investigated with various compression ratios. The minimum compression ratio for the easy start and stable operation was obtained at compression ratio of about 12.
Technical Paper

Performance and Emissions of a DI Diesel Engine Operated with LPG and Ignition Improving Additives

2001-09-24
2001-01-3680
This research investigated the performance and emissions of a direct injection (DI) Diesel engine operated on 100% butane liquid petroleum gas (LPG). The LPG has a low cetane number, therefore di-tertiary-butyl peroxide (DTBP) and aliphatic hydrocarbon (AHC) were added to the LPG (100% butane) to enhance cetane number. With the cetane improver, stable Diesel engine operation over a wide range of the engine loads was possible. By changing the concentration of DTBP and AHC several different LPG blended fuels were obtained. In-cylinder visualization was also used in this research to check the combustion behavior. LPG and only AHC blended fuel showed NOX emission increased compared to Diesel fuel operation. Experimental result showed that the thermal efficiency of LPG powered Diesel engine was comparable to Diesel fuel operation. Exhaust emissions measurements showed that NOX and smoke could be considerably reduced with the blend of LPG, DTBP and AHC.
Technical Paper

Performance and Emissions Characteristics of an LPG Direct Injection Diesel Engines

2002-03-04
2002-01-0869
In this study, performance and emissions characteristics of an LPG direct injection (DI) engine with a rotary distributor pump were examined by using cetane enhanced LPG fuel developed for diesel engines. Results showed that stable engine operation was possible for a wide range of engine loads. Also, engine output power with cetane enhanced LPG was comparable to diesel fuel operation. Exhaust emissions measurements showed NOx and smoke could be reduced with the cetane enhanced LPG fuel. Experimental model vehicle with an in-line plunger pump has received its license plate in June 2000 and started high-speed tests on a test course. It has already been operated more than 15,000 km without any major failure. Another, experimental model vehicle with a rotary distributor pump was developed and received its license plate to operate on public roads.
Technical Paper

Development of Retrofit DME Diesel Engine Operating with Rotary Distributor Fuel Injection Pump

2003-03-03
2003-01-0758
In order to reduce environmental disruption due to exhaust PM and NOx emissions from diesel engines of dimethyl ether (DME) has been proposed the use for the next generation vehicles, because the discharge of the atmospheric pollutants is less. In this study, DME is used to fuel a retrofit type diesel engine, and operational tests were carried out using a rotary distributor fuel injection pump. In this experiment, comparison and examination of the effects of fuel injection pressure, nozzle hole diameter, and injection timing. When using DME as an alternative fuel, the fuel temperature affects engine operation. And diameter of the injector nozzle hole and larger injection quantity is regarded as factors affecting the improvement in engine performance. In addition, for understanding the DME spray in the cylinder, DME was sprayed in a constant volume chamber where atmospheric temperature and pressure increased simultaneously, and the result is compared and examined with diesel fuel.
Technical Paper

CFD Simulation of Mixture Formation and Combustion Processes in a Direct-Injection Gasoline Engine Using a GTT Code

2003-05-19
2003-01-1842
In order to numerically simulate the mixture formation and combustion processes in a direct-injection gasoline engine, the validity of the submodels for fuel spray and combustion was investigated. The physical model proposed by the authors was employed for hollow-cone sprays injected from a swirl injector along with the authors' original submodels. This hollow-cone spray model was validated by comparing the calculated and measured results of the behavior of hollow-cone free spray. As a combustion model, Reitz's model was employed. These submodels were incorporated into the authors' GTT code, and the mixture formation and combustion processes in a direct-injection gasoline engine were numerically analyzed using this code. The validity of the submodels was confirmed by comparing the calculated results of the temporal variation of fuel vapor concentration and gas pressure in the cylinder with the experimental ones under various operating conditions of stratified charge combustion.
Technical Paper

Simultaneous Prediction of Pressure Losses and Acoustic Characteristics in Silencers by Numerical Simulation

1996-02-01
960637
A practical method has been developed for numerically predicting pressure losses and acoustic characteristics in silencers simultaneously under the quasi-operating conditions of internal combustion engines. In the present method, three-dimensional gas flow and pressure dynamics in silencers have been numerically simulated by means of a new three-dimensional non-linear fluid-dynamic model, where the gas exchange process in entire intake and exhaust systems has been calculated by a one-dimensional non-linear fluid-dynamic model for saying the computing time. In this three-dimensional fluid-dynamic model, an accurate numerical scheme with less numerical diffusion has been applied to the Reynolds average Navier-Stokes equations using an eddy-viscosity hypothesis. Pressure losses and insertion losses in silencers have been examined using the three-dimensional model. It has been shown that the present method can predict the pressure losses and acoustic characteristics simultaneously.
Technical Paper

A Dual Fuel Injector for Diesel Engines

1985-09-01
851584
The authors designed and produced a new dual fuel injector that allows two different kinds of fuel to be injected. This injector contains both a throttle type nozzle and a hole type which are located coaxially. The injection timing as well as the fuel quantity can be controlled individually. The running test using two lines of gas oil brought a good reduction of NOx and exhaust smoke. The experiment using gas oil and alcohol also brought a satisfactory reduction of exhaust emission.
Technical Paper

Improvement of the Dynamic Characteristics in the Connecting Passages for Measuring High Frequency Pressure Diagrams

1986-09-01
861277
Remarkable progress has been made in recent years on pressure measuring techniques and apparatuses, yet they seem not necessarily successful in achieving accurate pressure diagrams at the high frequency range. The primary cause of difficulty lies in the occurrence of undesirable vibrations in the connecting passages which diminishes the accuracy of pressure diagrams. In order to prevent such vibration, the authors have attempted to increase the natural frequency in the connecting passages by enclosing heat resisting silicon oil, to analyse the frequency characteristics of the passages, and to ensure the propriety of the analysis through comparison with experiments. As a result, it is proved that the natural frequency of the silicon oil enclosed passage increases twice as high as that of the passage filled with working gas.
Technical Paper

Effects of Injection Conditions on Mixture Formation Process in a Premixed Compression Ignition Engine

2000-06-19
2000-01-1831
The mixture formation process in a premixed compression ignition engine was numerically analyzed. This study aimed to find out effective injection conditions for lean mixture formation with high homogeneity, since the NOx and soot emissions in the engine are closely related to the mixture homogeneity. To calculate fuel spray behavior, a practical computer code GTT (Generalized Tank and Tube) was employed. In a model for the premixed compression ignition engine, the effects of injection parameters, such as injection timing, initial droplet size, spray angle, injection velocity, nozzle type (pintle and hole) and injection position / direction, on the mixture homogeneity near ignition timing (or TDC) were investigated. To evaluate the homogeneity of the mixture, an index was defined based on the spatial distribution of fuel mass fraction. The fuel vapor mass fractions as well as the homogeneity indices, obtained as a function of time, were compared under various boundary conditions.
Technical Paper

KIVA Simulation for Mixture Formation Processes in an In-Cylinder Injected LPG SI Engine

2000-10-16
2000-01-2805
This is a preliminary work for the development of a stratified combustion engine using liquefied petroleum gas(LPG) as an alternative fuel. The main objective of this research is to find out the optimizing engine parameters from the viewpoint of mixture formation with the aid of simulation, where the KIVA_ code was used. The combustion characteristics of LPG and gasoline are different because of their different physical properties. Therefore, the numerical simulation was performed for optimizing engine parameters by changing the piston and cylinder geometry, as well as injection conditions. Result showed that geometry of combustion chamber has a great influence on mixture stratification. Also, weaker swirl seems to be better for mixture formation in the vicinity of the spark plug.
X