Refine Your Search

Topic

Search Results

Technical Paper

A Severe Ankle and Foot Injury in Frontal Crashes and Its Mechanism

1998-11-02
983145
In a frontal automotive crash, the driver's foot is usually stepping on the brake pedal as an instinctive response to avoid a collision. The tensile force generated in the Achilles tendon produces a compressive preload on the tibia. If there is intrusion of the toe board after the crash, an additional external force is applied to the driver's foot. A series of dynamic impact tests using human cadaveric specimens was conducted to investigate the combined effect of muscle preloading and external force. A constant tendon force was applied to the calcaneus while an external impact force was applied to the forefoot by a rigid pendulum. Preloading the tibia significantly increased the tibial axial force and the combination of these forces resulted in five tibial pylon fractures out of sixteen specimens.
Technical Paper

Development of a Human FE Model with 3-D Geometry of Muscles and Lateral Impact Analysis for the Arm with Muscle Activity

2009-06-09
2009-01-2266
To investigate the effect of muscle activity in pre-impact on injury outcome, we developed a human arm finite element model with muscles which consisted of solid elements and truss elements that could be used for simulating muscle stiffness change for the inputted activity and 3-D geometry of each muscle. Two series of experimental tests on muscle stiffness change and arm flexion were conducted for validation of the model. Comparisons between the simulation results and test data indicated the model validity. Lateral impact simulations for a left arm demonstrated that the muscle activity in pre-impact had significant effects on the motion and stress distribution of the arm bones.
Technical Paper

Development and Validation of a Finite Element Model of a Vehicle Occupant

2004-03-08
2004-01-0325
A finite element human model has been developed to simulate occupant behavior and to estimate injuries in real-world car crashes. The model represents an average adult male of the US population in a driving posture. Physical geometry, mechanical characteristics and joint structures were replicated as precise as possible. The total number of nodes and materials is around 67,000 and 1,000 respectively. Each part of the model was not only validated against human test data in the literature but also for realistic loading conditions. Additional tests were newly conducted to reproduce realistic loading to human subjects. A data set obtained in human volunteer tests was used for validating the neck part. The head-neck kinematics and responses in low-speed rear impacts were compared between the measured and calculated results. The validity of the lower extremity part was examined by comparing the tibia force in a foot impact between the test data and simulation results.
Technical Paper

Evaluation and Research of Structural Interaction between of two cars in Car to Car Compatibility

2003-10-27
2003-01-2819
Incompatibility between two colliding cars is becoming an important issue in passive safety engineering. Among various phenomena, indicating signs of incompatibility, over-riding and under-riding are likely caused by geometrical incompatibility in vertical direction. The issue of over-riding and under-riding is, therefore, not only a problem for partner-protection but also a possible disadvantage in self-protection. One of the possible solutions of this dual contradictory problem is to have a good structural interaction between the front-ends of two cars. Studies have been done to develop a test protocol for assessment of this interaction and to define criteria for evaluation but mostly in terms of aggressivity, which is a term describing incompatibility of a relatively stronger car. In this study, it was hypothesized that homogeneous front-end could be a possible better solution for good structural interaction.
Technical Paper

Development and Evaluation of a Human Lower Extremity Model

2001-06-04
2001-06-0049
A finite element model of the human lower extremity has been developed in this study to simulate lower extremity behavior in frontal car crashes. Precise geometry of the human lower extremity and material properties of the hard and soft tissues were introduced to the model. The performance of the model was evaluated by comparing with dynamic loading test data using post mortem human subjects (PMHS). The comparison proved its ability to estimate dynamic responses of the human lower extremity. A study was conducted using the model to investigate possible factors of loading to the ankle and tibia. Force and moment were calculated with different time history profiles of footwell intrusion and pelvis motion. The results suggested that timing of maximum intrusion was important as well as its magnitude. It was also found that loading to the tibia could be affected not only by intrusion but also by pelvis motion.
Technical Paper

Evaluation of Vehicle Body Stiffness and Strength for Car to Car Compatibility

2001-10-16
2001-01-3098
When considering a CTC (car to car) frontal crash between a small light car and a large heavy car, it is necessary to evaluate the stiffness and strength of each vehicle body. As interactive force at the contact surface cannot be measured directly in a car to car crash test, a simplified practical method has been developed to estimate the interactive force based on the vehicle deceleration. The adequacy and consistency of the proposed method was verified by using the principle of conservation of energy. The calculated force-deformation curves revealed that the interactive force reached the maximum designed strength of the small light car based on the ODB (Offset Deformable Barrier) test for crash protection, while the force level was far below the corresponding design limit of the large heavy car. It was observed that the relatively lower stiffness of the small light car resulted in absorbing a larger share of the total input energy of the system when crashed into the large heavy car.
Technical Paper

Constitutive Modeling of Brain Parenchyma Taking Account of Strain Rate Dependency with Anisotropy and Application to Brain Injury Analyses

2016-04-05
2016-01-1485
A reduction in brain disorders owing to traumatic brain injury (TBI) caused by head impacts in traffic accidents is needed. However, the details of the injury mechanism still remain unclear. In past analyses, brain parenchyma of a head finite element (FE) model has generally been modeled using simple isotropic viscoelastic materials. For further understanding of TBI mechanism, in this study we developed a new constitutive model that describes most of the mechanical properties in brain parenchyma such as anisotropy, strain rate dependency, and the characteristic features of the unloading process. Validation of the model was performed against several material test data from the literature with a simple one-element model. The model was also introduced into the human head FE model of THUMS v4.02 and validated against post-mortem human subject (PMHS) test data about brain displacements and intracranial pressures during head impacts.
Technical Paper

A Study of Driver Injury Mechanism in High Speed Lateral Impacts of Stock Car Auto Racing Using a Human Body FE Model

2011-04-12
2011-01-1104
This paper analyzed the mechanisms of injury in high speed, right-lateral impacts of stock car auto racing, and interaction of the occupant and the seat system for the purpose of reducing the risk of injury, primarily rib fractures. Many safety improvements have been made to stock car racing recently, including the Head and Neck Support devices (HANS®), the 6-point restraint harnesses, and the implementation of the SAFER Barrier. These improvements have contributed greatly to mitigating injury during the race crash event. However, there is still potential to improve the seat structure and the understanding of the interaction between the driver and the seat in the continuation of making racing safety improvements. This is particularly true in the case of right-lateral impacts where the primary interaction is between the seat supports and the driver and where the chest is the primary region of injury.
Technical Paper

Experimental and Analytical Study of Knee Fracture Mechanisms in a Frontal Knee Impact

1996-11-01
962423
The mechanisms of knee fracture were studied experimentally using cadaveric knees and analytically by computer simulation. Ten 90 degree flexed knees were impacted frontally by a 20 kg pendulum with a rigid surface, a 450 psi (3.103 MPa) crush strength and a 100 psi (0.689 MPa) crush strength aluminum honeycomb padding and a 50 psi (0.345 MPa) crush strength paper honeycomb padding at a velocity of about five m/s. During rigid surface impact, a patella fracture and a split condylar fracture were observed. The split condylar fracture was generated by the patella pushing the condyles apart, based on a finite element model using the maximum principal stress as the injury criterion. In the case of the 450 psi aluminum honeycomb padding, the split condylar fracture still occurred, but no patella fractures were observed because the honeycomb provided a more uniform distribution of patella load. No bony fractures in the knee area occurred for impacts with a 50 psi paper honeycomb padding.
Technical Paper

Dynamic Characteristics of the Human Spine During -Gx Acceleration

1978-02-01
780889
Spinal kinematics and kinetics of human cadaveric specimens subjected to -Gx acceleration are reported along with an attempt to design a surrogate spine for use in an anthropomorphic test device (ATD). There were a total of 30 runs on 9 embalmed and 2 unembalmed cadavers which were heavily instrumented. External photographic targets were attached to T1, T12, and the pelvis to record spinal kinematics. The subjects were restrained by upper and lower leg clamps attached to an impact seat equipped with a six-axis load cell. A rigid link 486 mm long and pinned at both ends was proposed for use in an ATD as a surrogate spine. An optimization method was used to obtain the location and length of a linkage which followed the least squares path of Tl relative to the pelvis.
Technical Paper

Belt Slip Measurements on Human Volunteers and the Part 572 Dummy in Low -Gx Impact Acceleration

1983-10-17
831635
A series of volunteer and dummy impact experiments was performed on a Hyge-type (accelerator) sled to study the relative motion between the upper torso restraint and the torso surface. Kinematic measurements were made using a three-dimensional photogrammetric analysis of high-speed film data. Belt slip was found to be in the range of approximately 10 to 30 mm with more slip experienced by volunteers than the dummy. The dummy showed a slight change in amount of slip with acceleration level and all slip takes place within the first 80 ms of belt loading.
Technical Paper

Dynamic Impact Loading of the Femur Under Passive Restrained Condition

1984-10-01
841661
The biodynamic response of the femur during passively restrained -Gx impact acceleration is reported in this paper. Eleven unembalmed cadavers, ranging in age from 21 to 65 and weighing from 50 to 96 kg, were tested in a VW Rabbit seat with a passive belt and knee restraint. Sectioned parts of the VW knee bolster were placed about 130 mm away from the patella at the initiation of the tests. The height of the knee bolsters was adjusted individually in the eleven tests. Ten were set for loading directly through the patella. In one run, the impact was below the knee joint. The sectioned bolsters were mounted on a rigid frame and instrumented with triaxial load cells. A six-axis load cell was installed in the right femur. Photo targets were attached directly to the femur and tibia. Sled runs were made at 22 and 35 g. Only one cadaver sustained bilateral femoral fractures at 35 g.
Technical Paper

Bolster Impacts to the Knee and Tibia of Human Cadavers and an Anthropomorphic Dummy

1978-02-01
780896
Knee bolsters on the lower instrument panel have been designed to control occupant kinematics during sudden deceleration. However, a wide variability in car occupant anthropometry and choice of seating posture indicates that lower-extremity contacts with the impingement bolster could predominantly load the flexed leg through the knee (acting through the femur) or through the tibia (acting through the knee joint). Potential injuries associated with these types of primary loading may vary significantly and an understanding of potential trauma mechanisms is important for proper occupant restraint.
Technical Paper

Finite Element Simulation of Ankle/Foot Injury in Frontal Crashes

2000-03-06
2000-01-0156
Finite element models of human body segments have been developed in recent years. Numerical simulation could be helpful when understanding injury mechanisms and to make injury assessments. In the lower leg injury research in NISSAN, a finite element model of the human ankle/foot is under development. The mesh for the bony part was taken from the original model developed by Beaugonin et al., but was revised by adding soft tissue to reproduce realistic responses. Damping effect in a high speed contact was taken into account by modeling skin and fat in the sole of the foot. The plantar aponeurosis tendon was modeled by nonlinear bar elements connecting the phalanges to the calcaneus. The rigid body connection, which was defined at the toe in the original model for simplicity, was removed and the transverse ligaments were added instead in order to bind the metatarsals and the phalanges. These tendons and ligaments were expected to reproduce a realistic response in compression.
Technical Paper

Development of a Finite Element Model of the Human Lower Extremity for Analyses of Automotive Crash Injuries

2000-03-06
2000-01-0621
A finite element model of the human lower extremity has been developed to predict lower extremity injuries in full frontal and offset frontal impact. The model included 30bones from femur to toes. Each bone was modeled using crushable solid elements for the orbicular bone and damageable shell elements for the cortical bone. The models of the long bones for the lower extremities were validated against data obtained from quasi-static 3-pointbending tests by Yamada (1970). The ankle, knee and hip joints were modeled as bone-to-bone contacts and included major ligaments and tendons. The ankle model was validated against data obtained from quasi-staticdorsiflexion, inversion and eversion tests by Petit et al. (1996) and against data obtained from dynamic impactcadaveric tests by Kitagawa et al. (1998). The possibility of using this model to predict injuries was discussed.
Technical Paper

Development of a Finite Element Model of the Human Shoulder

2000-11-01
2000-01-SC19
Previous studies have hypothesized that the shoulder may be used to absorb some impact energy and reduce chest injury due to side impacts. Before this hypothesis can be tested, a good understanding of the injury mechanisms and the kinematics of the shoulder is critical for occupant protection in side impact. However, existing crash dummies and numerical models are not designed to reproduce the kinematics and kinetics of the human shoulder. The purpose of this study was to develop a finite element model of the human shoulder in order to achieve a deeper understanding of the injury mechanisms and the kinematics of the shoulder in side impact. Basic anthropometric data of the human shoulder used to develop the skeletal and muscular portions of this model were taken from commercial data packages. The shoulder model included three bones (the humerus, scapula and clavicle) and major ligaments and muscles around the shoulder.
Technical Paper

A Study of Knee Joint Kinematics and Mechanics using a Human FE Model

2005-11-09
2005-22-0006
Posterior translation of the tibia with respect to the femur can stretch the posterior cruciate ligament (PCL). Fifteen millimeters of relative displacement between the femur and tibia is known as the Injury Assessment Reference Value (IARV) for the PCL injury. Since the anterior protuberance of the tibial plateau can be the first site of contact when the knee is flexed, the knee bolster is generally designed with an inclined surface so as not to directly load the projection in frontal crashes. It should be noted, however, that the initial flexion angle of the occupant knee can vary among individuals and the knee flexion angle can change due to the occupant motion. The behavior of the tibial protuberance related to the knee flexion angle has not been described yet. The instantaneous angle of the knee joint at the timing of restraining the knee should be known to manage the geometry and functions of knee restraint devices.
Technical Paper

Ankle Skeletal Injury Predictions Using Anisotropic Inelastic Constitutive Model of Cortical Bone Taking into Account Damage Evolution

2005-11-09
2005-22-0007
The most severe ankle skeletal injury called pilon fractures can cause long term disability and impairment. Based on previous experimental studies, the pilon fractures are regarded as caused by a high-energy compressive force in the ankle joint and affected by a muscular tension force generated by emergency braking. However, quantitative injury criteria for the pilon fractures are still unknown. More accurate prediction of bone fractures in the distal tibia using a FE model of human lower leg can help us know the quantitative injury criteria. Therefore we newly proposed an anisotropic inelastic constitutive model of cortical bone including damage evolution and then implemented it to a FE code, LS-DYNA. The proposed model successfully reproduced most of anisotropy, strain rate dependency, and asymmetry of tension and compression on material and failure properties of human femoral cortical bone.
Technical Paper

Investigation of Anteroposterior Head-Neck Responses during Severe Frontal Impacts Using a Brain-Spinal Cord Complex FE Model

2006-11-06
2006-22-0019
Injuries of the human brain and spinal cord associated with the central nervous system (CNS) are seen in automotive accidents. CNS injuries are generally categorized into severe injuries (AIS 3+). However, it is not clear how the restraint conditions affect the CNS injuries. This paper presents a newly developed three-dimensional (3D) finite element head-neck model in order to investigate the biomechanical responses of the brain-spinal cord complex. The head model consists of the scalp, skull, and a detailed description of the brain including the cerebrum, cerebellum, brainstem with distinct white and gray matter, cerebral spinal fluid (CSF), sagittal sinus, dura, pia, arachnoid, meninx, falx cerebri, and tentorium. Additionally, the neck model consists of the cervical vertebral bodies, intervertebral discs, muscles, ligaments, spinal cord with white and gray matter, cervical pia, and CSF.
Technical Paper

Research of the Relationship of Pedestrian Injury to Collision Speed, Car-type, Impact Location and Pedestrian Sizes using Human FE model (THUMS Version 4)

2012-10-29
2012-22-0007
Injuries in car to pedestrian collisions are affected by various factors such as the vehicle body type, pedestrian body size and impact location as well as the collision speed. This study aimed to investigate the influence of such factors taking a Finite Element (FE) approach. A total of 72 collision cases were simulated using three different vehicle FE models (Sedan, SUV, Mini-Van), three different pedestrian FE models (AM50, AF05, AM95), assuming two different impact locations (center and the corner of the bumper) and at four different collision speeds (20, 30, 40 and 50 km/h). The impact kinematics and the responses of the pedestrian model were validated against those in the literature prior to the simulations. The relationship between the collision speed and the predicted occurrence of head and chest injuries was examined for each case, analyzing the impact kinematics of the pedestrian against the vehicle body and resultant loading to the head and the chest.
X