Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

A Next-Generation Emission Test Procedure for Small Utility Engines - Part 1, Background and Approach

1990-09-01
901595
Measurement of emissions from small utility engines has usually been accomplished using steady-state raw emissions procedures such as SAE Recommended Practice J1088. While raw exhaust measurements have the advantage of producing modal exhaust gas concentration data for design feedback; they are laborious, may influence both engine performance and the emissions themselves, and have no provision for concurrent particulate measurements. It is time to consider a full-dilution procedure similar in principle to automotive and heavy-duty on-highway emission measurement practice, leading to improvements in many of the areas noted above, and generally to much higher confidence in data obtained. When certification and audit of small engine emissions become a reality, a brief dilute exhaust procedure generating only the necessary data will be a tremendous advantage to both manufacturers and regulatory agencies.
Technical Paper

Public Opinion of Diesel Odor

1974-02-01
740214
This paper describes the results of a public opinion survey on testing of diesel exhaust odors conducted during 1969 and 1970. Major goals of the research were to relate public opinion of the odors and the objectionability associated with them to odor intensity, and to obtain a dose-response curve as the primary result. The dose-response curve was needed to assess odor-control technology by providing a criterion for deciding whether or not the effect of a given control item would be noticed by the general public, reduce complaints, or be worth the cost and effort required for its implementation. The engine used as the live odor source for the subject research was a two-stroke cycle type similar to those used in many buses. This engine type was chosen because its exposure to the public in urban bus applications is very widespread, and because a large portion of the Environmental Protection Agency's odor research had been performed with similar engines.
Technical Paper

Emissions from Direct-Injected Heavy-Duty Methanol-Fueled Engines (One Dual-Injection and One Spark-Ignited) and a Comparable Diesel Engine

1982-02-01
820966
Emissions from two heavy-duty four stroke direct injection engines designed to use methanol fuel, one using Diesel pilot fuel injection and the other using spark ignition, were characterized in this program along with those from a comparably-sized Diesel engine. Emissions evaluated during both steady-state and transient FTP procedures included regulated gases (HC, CO, and NOx), unburned methanol, aldehydes, other gaseous organics, total particulate, sulfate, soluble organics in particulate and BaP. The engines adapted for methanol fuel and using catalysts emitted less HC, CO, particulate, soluble organics, and BaP than the Diesel fueled engine.
Technical Paper

Heavy-Duty Diesel Emissions as a Function of Alternate Fuels

1983-02-01
830377
Emissions from a modern heavy-duty Diesel truck engine were characterized with five different fuels during transient and steady-state operation. A control fuel (Phillips D-2) was used for baseline emissions, and as base stock in three alternate fuel blends containing EDS or SRC-II middle distillates, or used lubricating oil. The fifth fuel tested was neat soybean oil, heated to 145°C. HC, CO, NOX, and particulate emissions were similar for this engine on all fuels tested, with the exception of higher particulates for the soybean oil and higher NOX for the SRC-II blend.
Technical Paper

Influence of Maladjustment on Emissions from Two Heavy-Duty Diesel Bus Engines

1984-02-01
840416
Diesel engines are adjusted to manufacturers' specifications when produced and placed in service, but varying degrees of maintenance and wear can cause changes in engine performance and exhaust emissions. Maladjustments were made on two heavy-duty diesel engines typically used in buses in an effort to simulate some degree of wear and/or lack of maintenance. Emissions were characterized over steady-state and transient engine operation, in both baseline and maladjusted configurations. Selected maladjustments of the Cummins VTB-903 substantially increased HC, smoke and particulate emission levels. Maladjustments of the Detroit Diesel 6V-71 coach engine resulted in lower HC and NOX emission levels, but higher CO emissions, smoke, and particulate.
X