Refine Your Search

Topic

Author

Search Results

Journal Article

Effects of Biodiesel Blends on Particulate Matter Oxidation in a Catalyzed Particulate Filter during Active Regeneration

2010-04-12
2010-01-0557
Active regeneration experiments were performed on a production diesel aftertreatment system containing a diesel oxidation catalyst and catalyzed particulate filter (CPF) using blends of soy-based biodiesel. The effects of biodiesel on particulate matter oxidation rates in the filter were explored. These experiments are a continuation of the work performed by Chilumukuru et al., in SAE Technical Paper No. 2009-01-1474, which studied the active regeneration characteristics of the same aftertreatment system using ultra-low sulfur diesel fuel. Experiments were conducted using a 10.8 L 2002 Cummins ISM heavy-duty diesel engine. Particulate matter loading of the filter was performed at the rated engine speed of 2100 rpm and 20% of the full engine load of 1120 Nm. At this engine speed and load the passive oxidation rate is low. The 17 L CPF was loaded to a particulate matter level of 2.2 g/L.
Journal Article

Model-Based Estimation and Control System Development in a Urea-SCR Aftertreatment System

2008-04-14
2008-01-1324
In this paper, a model-based linear estimator and a non-linear control law for an Fe-zeolite urea-selective catalytic reduction (SCR) catalyst for heavy duty diesel engine applications is presented. The novel aspect of this work is that the relevant species, NO, NO2 and NH3 are estimated and controlled independently. The ability to target NH3 slip is important not only to minimize urea consumption, but also to reduce this unregulated emission. Being able to discriminate between NO and NO2 is important for two reasons. First, recent Fe-zeolite catalyst studies suggest that NOx reduction is highly favored by the NO 2 based reactions. Second, NO2 is more toxic than NO to both the environment and human health. The estimator and control law are based on a 4-state model of the urea-SCR plant. A linearized version of the model is used for state estimation while the full nonlinear model is used for control design.
Journal Article

Detection, Origin and Effect of Ultra-Low Platinum Contamination on Diesel-SCR Catalysts

2008-10-06
2008-01-2488
This paper discusses the poisoning of a selective catalytic reduction (SCR) catalyst by trace levels of platinum originating from an upstream diesel oxidation catalyst (DOC). A diesel aftertreatment system consisting of a DOC, urea based SCR Catalyst and a DPF was aged and evaluated on a 6.4 liter diesel engine dynamometer. The SCR catalyst system consisted of an Fe-zeolite catalyst followed by a Cu-zeolite catalyst. After approximately 400 hours of engine operation at varied exhaust flow rates and temperatures, deactivation of the SCR catalyst was observed. A subsequent detailed investigation revealed that the Cu catalyst was not deactivated and the front half of the Fe-based catalyst showed severe deactivation. The deactivated portion of the catalyst showed high activity of NH3 conversion to NOx and N2O formation. The cause of the deactivation was identified to be the presence of trace Pt contamination.
Technical Paper

The Measurement and Sampling of Controlled Regeneration Emissions from a Diesel Wall-Flow Particulate Trap

1991-02-01
910606
A diesel exhaust sampling system was specially designed to measure and collect emissions from a ceramic wall-flow particulate trap during periods of controlled electric regeneration with the exhaust emissions bypassing the trap. This resulted in the regeneration emissions being independent of those produced during either baseline (no control) or trap (exhaust filtration) sampling conditions. This system provided data regarding the physical, chemical, and biological character of regeneration emissions relative to baseline and trap emissions. Selected emission levels measured continuously during the regeneration process were also used to define the particle combustion process in the trap core. Variations in hydrocarbons (HC), oxides of nitrogen (NOx), and particulate volume concentrations during the regeneration process were used to define four stages of the combustion process: preheat; combustion wave formation; combustion wave propagation; and combustion wave extinction.
Technical Paper

The Effect of a Ceramic Particulate Trap on the Particulate and Vapor Phase Emissions of a Heavy-Duty Diesel Engine

1991-02-01
910609
Exhaust emissions were characterized from a Cummins LTA10 heavy-duty diesel engine operated at two EPA steady-state modes with and without an uncatalyzed Corning ceramic particulate trap. The regulated emissions of nitrogen oxides (NOx), hydrocarbons (HC), and total particulate matter (TPM) and its components as well as the unregulated emissions of PAH, nitro-PAH, mutagenic activity and particle size distributions were measured. The consistently significant effects of the trap on regulated emissions included reductions of TPM and TPM-associated components. There were no changes in NOx and HC were reduced only at one operating condition. Particle size distribution measurements showed that nuclei-mode particles were formed downstream of the trap, which effectively removed accumulation-mode particles. All of the mutagenicity was direct-acting and the mutagenic activity of the XOC was approximately equivalent to that of the SOF without the trap.
Technical Paper

The Influence of Sampling Conditions on the Repeatability of Diesel Particulate and Vapor Phase Hydrocarbon and PAH Measurements

1990-02-01
900642
A study was conducted to assess the effects of controlling filter face temperatures and two differently sized collection systems on diesel total particulate matter (TPM) and vapor phase hydrocarbon levels from a diesel engine. The results were used to revise sampling protocols so that variability associated with quantitation of polynuclear aromatic hydrocarbons (PAH) is minimized. Particulate soluble organic fraction (SOF) levels (%) were compared 1) for tests where the dilute exhaust filter face temperature was held constant by varying dilution ratio (DR) to account for day to day variations in inlet air temperature to the tunnel and 2) for tests in earlier studies where the DR was held constant and the filter face temperature then varied because of varying tunnel inlet air temperature. Between date variations in %SOF were reduced by about 60% due to holding filter face temperatures constant, compared to holding DR constant.
Technical Paper

Experimental and Modeling Results Comparing Two Diesel Oxidation Catalyst - Catalyzed Particulate Filter Systems

2008-04-14
2008-01-0484
Steady-state particulate loading experiments were conducted on an advanced production catalyzed particulate filter (CPF), both with and without a diesel oxidation catalyst (DOC). A heavy-duty diesel engine was used for this study with the experiments conducted at 20, 40, 60 and 75 % of full load (1120 Nm) at rated speed (2100 rpm). The data obtained from these experiments were used and are necessary for calibrating the MTU 1-D 2-Layer CPF model. These experimental and modeling results were compared to previous research conducted at MTU that used the same engine but an earlier development version of the combination of DOC and CPF. The motivation for the comparison of the two systems was to determine whether the reformulated production catalysts performed as good or better than the early development catalysts. The results were compared to understand the filtration and oxidation differences between the two DOC+CPF and the CPF-only aftertreatment systems.
Technical Paper

A Methodology to Estimate the Mass of Particulate Matter Retained in a Catalyzed Particulate Filter as Applied to Active Regeneration and On-Board Diagnostics to Detect Filter Failures

2008-04-14
2008-01-0764
A methodology to estimate the mass of particulate retained in a catalyzed particulate filter as a function of measured total pressure drop, volumetric flow rate, exhaust temperature, exhaust gas viscosity and cake and wall permeability applicable to real-time computation is discussed. This methodology is discussed from the view point of using it to indicate when to initiate active regeneration and as an On-Board Diagnostic tool to detect filter failures. Steady-state loading characterization experiments were conducted on a catalyzed diesel particulate filter (CPF) in a Johnson Matthey CCRT® (catalyzed continuously regenerating trap) system. The experiments were performed using a 10.8 L 2002 Cummins ISM heavy-duty diesel engine. Experiments were conducted at 20, 60 and 75% of full engine load (1120 Nm) and rated speed (2100 rpm) to measure the pressure drop, transient filtration efficiency, particulate mass balance, and gaseous emissions.
Technical Paper

An Experimental Study of Particulate Thermal Oxidation in a Catalyzed Filter During Active Regeneration

2009-04-20
2009-01-1474
Active regeneration experiments were performed on a Cummins 2007 aftertreatment system by hydrocarbon dosing with injection of diesel fuel downstream of the turbocharger. The main objective was to characterize the thermal oxidation rate as a function of temperature and particulate matter (PM) loading of the catalyzed particulate filter (CPF). Partial regeneration tests were carried out to ensure measureable masses are retained in the CPF in order to model the oxidation kinetics. The CPF was subsequently re-loaded to determine the effects of partial regeneration during post-loading. A methodology for gathering particulate data for analysis and determination of thermal oxidation in a CPF system operating in the engine exhaust was developed. Durations of the active regeneration experiments were estimated using previous active regeneration work by Singh et al. 2006 [1] and were adjusted as the experiments progressed using a lumped oxidation model [2, 3].
Technical Paper

Experimental Study Comparing Particle Size and Mass Concentration Data for a Cracked and Un-Cracked Diesel Particulate Filter

2009-04-20
2009-01-0629
Steady state loading characterization experiments were conducted at three different engine load conditions and rated speed on the cracked catalyzed particulate filter (CPF). The experiments were performed using a 10.8 L 2002 Cummins ISM-330 heavy duty diesel engine. The CPF underwent a ring off failure, commonly seen in particulate filters, due to high radial and axial temperature gradients. The filters were cracked during baking in an oven which was done to regenerate PM collected after every loading characterization experiment. Two different configurations i.e. with and without a diesel oxidation catalyst (DOC) upstream of the CPF were studied. The data were compared with that on an un-cracked CPF at similar engine conditions and configurations. Pressure drop, transient filtration efficiency by particle size and PM mass and gaseous emissions measurements were made during each experiment.
Technical Paper

Design and Development of a Model Based Feedback Controlled Cooling System for Heavy Duty Diesel Truck Applications Using a Vehicle Engine Cooling System Simulation

2001-03-05
2001-01-0336
A thermal management system for heavy duty diesel engines is presented for maintaining acceptable and constant engine temperatures over a wide range of operational conditions. It consists of a computer controlled variable speed coolant pump, a position controlled thermostat, and a model-based control strategy. An experimentally validated, diesel engine cooling system simulation was used to demonstrate the thermal management system's capability to reduce power consumption. The controller was evaluated using a variety of operating scenarios across a wide range of loads, vehicle speeds, and ambient temperatures. Three metrics were used to assess the effects of the computer controlled system: engine temperature, energy savings, and cab temperature. The proposed control system provided very good control over the engine coolant temperatures while maintaining engine metal temperatures within a desired range.
Technical Paper

A Study of the Effect of a Catalyzed Particulate Filter on the Emissions from a Heavy-Duty Diesel Engine with EGR

2001-03-05
2001-01-0910
The effects of a catalyzed particulate filter (CPF) and Exhaust Gas Recirculation (EGR) on heavy-duty diesel engine emissions were studied in this research. EGR is used to reduce the NOx emissions but at the same time it can increase total particulate matter (TPM) emissions. CPF is technology available for retrofitting existing vehicles in the field to reduce the TPM emissions. A conventional low sulfur fuel (371 ppm S) was used in all the engine runs. Steady-state loading and regeneration experiments were performed with CPF I to determine its performance with respect to pressure drop and particulate mass characteristics at different engine operating conditions. From the dilution tunnel emission characterization results for CPF II, at Mode 11 condition (25% load - 311 Nm, 1800 rpm), the TPM, HC and vapor phase emissions (XOC) were decreased by 70%, 62% and 62% respectively downstream of the CPF II.
Technical Paper

A Study of the Dilution Effects on Particle Size Measurement from a Heavy-Duty Diesel Engine with EGR

2001-03-05
2001-01-0220
A study of particle size distributions was conducted on a Cummins M11 1995 engine using the Scanning Mobility Particle Sizer (SMPS) instrument in the baseline and downstream of the Catalyzed Particulate Filter (CPF). Measurements were made in the dilution tunnel to investigate the effect of primary dilution ratio and mixture temperature on the nuclei and accumulation mode particle formation. Experiments were conducted at two different engine modes namely Mode 11 (25% load - 311 Nm, 1800 rpm) and Mode 9 (75% load - 932 Nm, 1800 rpm). The nanoparticle formation decreased with increasing dilution ratios for a constant mixture temperature in the baseline as well as downstream of the CPF II for Mode 11 condition. At Mode 9 condition in the baseline, the dilution ratio had a little effect on the nanoparticle formation, since the distribution was not bimodal and was dominated by accumulation mode particles.
Technical Paper

1.9-Liter Four-Cylinder HCCI Engine Operation with Exhaust Gas Recirculation

2001-05-07
2001-01-1894
We present the effect of EGR, at a set fuel flow rate and intake temperature, on the operating parameters of timing of combustion, duration of combustion, power output, thermal efficiency, and NOx emission; which is remarkably low. We find that addition of EGR at constant inlet temperature and constant fuel flow rate has little effect on HCCI parameter of start of combustion (SOC). However, burn duration is highly dependent on the amount of EGR inducted. The experimental setup at UC Berkeley uses a 1.9-liter 4-cylinder diesel engine with a compression ratio of 18.8:1 (offered on a 1995 VW Passat TDI). The engine was converted to run in HCCI mode by addition of an 18kW air pre-heater installed in the intake system. Pressure traces were obtained using four water-cooled quartz pressure transducers, which replaced the Diesel fuel injectors. Gaseous fuel (propane or butane) flowed steadily into the intake manifold.
Technical Paper

Oxidation Catalytic Converter and Emulsified Fuel Effects on Heavy-Duty Diesel Engine Particulate Matter Emissions

2002-03-04
2002-01-1278
The effects of an oxidation catalytic converter (OCC), an emulsified fuel, and their combined effects on particle number and volume concentrations compared to those obtained when using a basefuel were studied. Particle size and particulate emission measurements were conducted at three operating conditions; idle (850 rpm, 35 Nm), Mode 11 (1900 rpm, 277 Nm) and Mode 9 (1900 rpm, 831 Nm) of the EPA 13 mode cycle. The individual effects of the emulsified fuel and the OCC as well as their combined effects on particle number and volume concentrations were studied at two different particle size ranges; the nuclei (less than or equal to 50 nm) and accumulation (greater than 50 nm) modes. An OCC loaded with 10 g/ft3 platinum metal (OCC1) and a 20% emulsified fuel were used for this study and a notable influence on the particle size with respect to number and volume distributions was observed.
Technical Paper

Oxidation Catalytic Converter and Emulsified Fuel Effects on Heavy-Duty Diesel Engine Emissions

2002-03-04
2002-01-1277
A study was conducted to assess the effects of a water-diesel fuel emulsion with and without an oxidation catalytic converter (OCC) on steady-state heavy-duty diesel engine emissions. Two OCCs with different metal loading levels were used in this study. A 1988 Cummins L10-300 heavy-duty diesel engine was operated at the rated speed of 1900 rpm and at 75% and 25% load conditions (EPA modes 9 and 11 respectively) of the 13 mode steady-state test as well as at idle. Raw exhaust emissions' measurements included total hydrocarbons (HC), oxides of nitrogen (NOx) and nitric oxide (NO). Diluted exhaust measurements included total particulate matter (TPM) and its primary constituents, the soluble organic (SOF), sulfate (SO42-) and the carbonaceous solids (SOL) fractions. Vapor phase organic compounds (XOC) were also analyzed. The SOF and XOC samples were analyzed for selected polynuclear aromatic hydrocarbons (PAHs).
Technical Paper

An Investigation of the Effect of Fuel-Air Mixedness on the Emissions from an HCCI Engine

2002-05-06
2002-01-1758
This research work has focused on measuring the effect of fuel/air mixing on performance and emissions for a homogeneous charge compression ignition engine running on propane. A laser instrument with a high-velocity extractive probe was used to obtain time-resolved measurements of the fuel concentration both at the intake manifold and from the cylinder for different levels of fuel-air mixing. Cylinder pressure and emissions measurements have been performed at these mixing levels. From the cylinder pressure measurements, the IMEP and peak cylinder pressure were found. The fuel-air mixing level was changed by adding the fuel into the intake system at different distances from the intake valve (40 cm and 120 cm away). It was found that at the intake manifold, the fuel and air were better mixed for the 120 cm fuel addition location than for the 40 cm location.
Technical Paper

A Controlled EGR Cooling System for Heavy Duty Diesel Applications Using the Vehicle Engine Cooling System Simulation

2002-03-04
2002-01-0076
In order to comply with 2002 EPA emissions regulations, cooled exhaust gas recirculation (EGR) will be used by heavy duty (HD) diesel engine manufacturers as the primary means to reduce emissions of nitrogen oxides (NOx). A feedforward controlled EGR cooling system with a secondary electric water pump and proportional-integral-derivative (PID) feedback has been designed to cool the recirculated exhaust gas in order to better realize the benefits of EGR without overcooling the exhaust gas since overcooling leads to the fouling of the EGR cooler with acidic residues. A system without a variable controlled coolant flow rate is not able to achieve these goals because the exhaust temperature and the EGR schedule vary significantly, especially under transient and warm-up operating conditions. Simulation results presented in this paper have been determined using the Vehicle Engine Cooling System Simulation (VECSS) software, which has been developed and validated using actual engine data.
Technical Paper

A One-Dimensional Computational Model for Studying the Filtration and Regeneration Characteristics of a Catalyzed Wall-Flow Diesel Particulate Filter

2003-03-03
2003-01-0841
A one-dimensional, two layer computational model was developed to predict the behavior of a clean and particulate-loaded catalyzed wall-flow diesel particulate filter (CPF). The model included the mechanisms of particle deposition inside the CPF porous wall and on the CPF wall surface, the exhaust flow field and temperature field inside the CPF, as well as the particulate catalytic oxidation mechanisms accounting for the catalyst-assisted particulate oxidation by the catalytic coating in addition to the conventional particulate thermal oxidation. The paper also develops the methodology for calibrating and validating the model with experimental data. Steady state loading experiments were performed to calibrate and validate the model.
X