Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Improved Seat Belt Restraint Geometry for Frontal, Frontal Oblique and Rollover Incidents

2015-04-14
2015-01-0740
Throughout the first decade of the twenty first century, large improvements in occupant safety have been made in NASCAR®'s (National Association for Stock Car Auto Racing, Inc) race series. Enhancements to the occupant restraint system include the development and implementation of head and neck restraints, minimum performance requirements for belts and seats and the introduction of energy absorbing foam are a few highlights, among others. This paper discusses nineteen sled tests used to analyze hypothesized improvements to restraint system mounting geometry. The testing matrix included three sled acceleration profiles, three impact orientations, two Anthropomorphic Test Device (ATD) sizes as well as the restraint system design variables.
Journal Article

Determination of the Pressure Distribution Beneath Two- and Three-Inch Wide Racing Safety Belts

2008-12-02
2008-01-2977
This study examines the static pressure distribution under both width belts in the shoulder and the pelvis of 15 volunteer subjects. The subjects applied the belt loads to themselves through a lever and pulley system. The configuration of the belts simulated the typical arrangement of a six-point belted upright-seated racing driver. The pressure distribution between the belt and the volunteer's body was determined and recorded with Tek-Scan pressure sensing grids. The paper presents the results of the measurements by comparing the actual area of significant loading beneath the two widths and materials of both lap and shoulder belts. In, general, there no significant increase in loaded area for the wider belts.
Technical Paper

Development of a Collapse Mode Control Method for Side Members in Vehicle Collisions

1991-02-01
910809
Side members are provided with beads that promote more effective absorption of crash energy in vehicle frontal collisions. In this work, finite element analysis was used to investigate a method of calculating the most effective beading position. First, it was found that an inelastic buckling mode as a numerical imperfection makes it possible to analyze the collapse behavior of beaded members. Second, a new method was developed for calculating the most effective beading position along the buckling mode of side members. When a side member is provided with beads according to this method, it collapses axially, enabling it to absorb crash energy more efficiently. It was also found that the buckling mode used as a numerical imperfection for determining the placement of beads should be calculated at the peak point of the load curve.
Technical Paper

Thoracic Injury Assessment of Belt Restraint Systems Based on Hybrid III Chest Compression

1991-10-01
912895
Measurement of chest compression is vital to properly assessing injury risk for restraint systems. It directly relates chest loading to the risk of serious or fatal compression injury for the vital organs protected by the rib cage. Other measures of loading such as spinal acceleration or total restraint load do not separate how much of the force is applied to the rib cage, shoulders, or lumbar and cervical spines. Hybrid III chest compression is biofidelic for blunt impact of the sternum, but is “stiff” for belt loading. In this study, an analysis was conducted of two published crash reconstruction studies involving belted occupants. This provides a basis for comparing occupant injury risks with Hybrid III chest compression in similar exposures. Results from both data sources were similar and indicate that belt loading resulting in 40 mm Hybrid III chest compression represents a 20-25% risk of an AIS≥3 thoracic injury.
Technical Paper

Biomechanical Investigation of Thoracolumbar Spine Fractures in Indianapolis-type Racing Car Drivers during Frontal Impacts

2006-12-05
2006-01-3633
The purpose of this study is to provide an understanding of driver kinematics, injury mechanisms and spinal loads causing thoracolumbar spinal fractures in Indianapolis-type racing car drivers. Crash reports from 1996 to 2006, showed a total of forty spine fracture incidents with the thoracolumbar region being the most frequently injured (n=15). Seven of the thoracolumbar fracture cases occurred in the frontal direction and were a higher injury severity as compared to rear impact cases. The present study focuses on thoracolumbar spine fractures in Indianapolis-type racing car drivers during frontal impacts and was performed using driver medical records, crash reports, video, still photographic images, chassis accelerations from on-board data recorders and the analysis tool MADYMO to simulate crashes. A 50th percentile, male, Hybrid III dummy model was used to represent the driver.
Technical Paper

Biomechanical Analysis of Indy Race Car Crashes

1998-11-02
983161
This paper describes the results of an ongoing project in the GM Motorsports Safety Technology Research Program to investigate Indianapolis-type (Indy car) race car crashes using an on-board impact recorder as the primary data collection tool. The paper discusses the development of specifications for the impact-recording device, the selection of the specific recorder and its implementation on a routine basis in Indy car racing. The results from incidents that produced significant data (crashes with peak decelerations above 20 G) during the racing seasons from 1993 through the first half of 1998 are summarized. The focus on Indy car crashes has proven to provide an almost laboratory-like setting due to the similarity of the cars and to the relative simplicity of the crashes (predominantly planar crashes involving single car impacts against well-defined impact surfaces).
Technical Paper

Head-Neck Kinematics in Dynamic Forward Flexion

1998-11-02
983156
Two-dimensional film analysis was conducted to study the kinematics of the head and neck of 17 restrained human volunteers in 24 frontal impacts for acceleration levels from 6g to 15g. The trajectory of the head center of gravity relative to upper torso reference points and the rotation of head and neck relative to the lower torso during the forward motion phase were of particular interest. The purpose of the study was to analyze the head-neck kinematics in the mid-sagittal plane for a variety of human volunteer frontal sled tests from different laboratories using a common analysis method for all tests, and to define a common response corridor for the trajectory of the head center-of-gravity from those tests.
Technical Paper

A Severe Ankle and Foot Injury in Frontal Crashes and Its Mechanism

1998-11-02
983145
In a frontal automotive crash, the driver's foot is usually stepping on the brake pedal as an instinctive response to avoid a collision. The tensile force generated in the Achilles tendon produces a compressive preload on the tibia. If there is intrusion of the toe board after the crash, an additional external force is applied to the driver's foot. A series of dynamic impact tests using human cadaveric specimens was conducted to investigate the combined effect of muscle preloading and external force. A constant tendon force was applied to the calcaneus while an external impact force was applied to the forefoot by a rigid pendulum. Preloading the tibia significantly increased the tibial axial force and the combination of these forces resulted in five tibial pylon fractures out of sixteen specimens.
Technical Paper

Development and Validation of a Finite Element Model of a Vehicle Occupant

2004-03-08
2004-01-0325
A finite element human model has been developed to simulate occupant behavior and to estimate injuries in real-world car crashes. The model represents an average adult male of the US population in a driving posture. Physical geometry, mechanical characteristics and joint structures were replicated as precise as possible. The total number of nodes and materials is around 67,000 and 1,000 respectively. Each part of the model was not only validated against human test data in the literature but also for realistic loading conditions. Additional tests were newly conducted to reproduce realistic loading to human subjects. A data set obtained in human volunteer tests was used for validating the neck part. The head-neck kinematics and responses in low-speed rear impacts were compared between the measured and calculated results. The validity of the lower extremity part was examined by comparing the tibia force in a foot impact between the test data and simulation results.
Technical Paper

Evaluation and Research of Structural Interaction between of two cars in Car to Car Compatibility

2003-10-27
2003-01-2819
Incompatibility between two colliding cars is becoming an important issue in passive safety engineering. Among various phenomena, indicating signs of incompatibility, over-riding and under-riding are likely caused by geometrical incompatibility in vertical direction. The issue of over-riding and under-riding is, therefore, not only a problem for partner-protection but also a possible disadvantage in self-protection. One of the possible solutions of this dual contradictory problem is to have a good structural interaction between the front-ends of two cars. Studies have been done to develop a test protocol for assessment of this interaction and to define criteria for evaluation but mostly in terms of aggressivity, which is a term describing incompatibility of a relatively stronger car. In this study, it was hypothesized that homogeneous front-end could be a possible better solution for good structural interaction.
Technical Paper

Sled Test Evaluation of Racecar Head/Neck Restraints

2002-12-02
2002-01-3304
Recent action by some racecar sanctioning bodies making head/neck restraint use mandatory for competitors has resulted in a number of methods attempting to provide head/neck restraint. This paper evaluates the performance of a number of commercially available head/neck restraint systems using a stock car seating configuration and a realistic stock car crash pulse. The tests were conducted at an impact angle of 30 degrees to the right, with a midsize male Hybrid III anthropomorphic test device (ATD) modified for racecar crash testing. A six-point latch and link racing harness restrained the ATD. The goal of the tests was to examine the performance of the head/neck restraint without the influence of the seat or steering wheel. Three head/neck restraint systems were tested using a sled pulse with a 35 mph (56 km/h) velocity change and 50G peak deceleration. Three tests with three samples of each system were performed to assess repeatability.
Technical Paper

A Study of Driver Injury Mechanism in High Speed Lateral Impacts of Stock Car Auto Racing Using a Human Body FE Model

2011-04-12
2011-01-1104
This paper analyzed the mechanisms of injury in high speed, right-lateral impacts of stock car auto racing, and interaction of the occupant and the seat system for the purpose of reducing the risk of injury, primarily rib fractures. Many safety improvements have been made to stock car racing recently, including the Head and Neck Support devices (HANS®), the 6-point restraint harnesses, and the implementation of the SAFER Barrier. These improvements have contributed greatly to mitigating injury during the race crash event. However, there is still potential to improve the seat structure and the understanding of the interaction between the driver and the seat in the continuation of making racing safety improvements. This is particularly true in the case of right-lateral impacts where the primary interaction is between the seat supports and the driver and where the chest is the primary region of injury.
Technical Paper

Assessment of Air Bag Deployment Loads with the Small Female Hybrid III Dummy

1993-11-01
933119
This study is an extension of previous work on driver air bag deployment loads which used the mid-size male Hybrid Ill dummy. Both small female and mid-size male Hybrid Ill dummies were tested with a range of near-positions relative to the air bag module. These alignments ranged from the head centered on the module to the chest centered on the module and with various separations and lateral shifts from the module. For both sized dummies the severity of the loading from the air bag depended on alignment and separation of the dummy with respect to the air bag module. No single alignment provided high responses for all body regions, indicating that one test at a typical alignment cannot simultaneously determine the potential for injury risk for the head, neck, and torso. Based on comparisons with their respective injury assessment reference values, the risk of chest injury appeared similar for both sized dummies.
Technical Paper

Development and Application of a Shape-Topology Optimization System Using a Homogenization Method

1994-03-01
940892
The shape and topology optimization method using a homogenization method is a powerful design tool because it can treat topological changes of a design domain. This method was originally developed in 1988 [1] and have been studied by many researchers. However, their scope of application in real vehicle design works has been limited where a design domain and boundary conditions are very complicated. The authors have developed a powerful optimization system by adopting a general purpose finite element analysis code. A method for treating vibration problems is also discussed. A new objective function corresponding to a multi-eigenvalue optimization problem is suggested. An improved optimization algorithm is then applied to solve the problem. Applications of the optimization system to design the body and the parts of a solar car are presented.
Technical Paper

Injury Assessment Reference Values for the CRABI 6-Month Infant Dummy in a Rear-Facing Infant Restraint with Airbag Deployment

1995-02-01
950872
The purpose of this paper is to establish injury assessment reference values specific to the CRABI 6-Month infant dummy for use in evaluating the interaction of rear-facing infant restraints with a deploying passenger airbag. The available literature on the biomechanics of child injury and mechanical response and the results of impact tests with various child and infant dummies are reviewed and summarized. Estimations of the injury assessment reference values for use with the CRABI 6-Month dummy are made using scaling techniques based on the principles of dimensional analysis and dummy test data from infant restraint tests under conditions where injuries are not likely to occur. The information developed in this report will allow the assessment of injury potential in tests of the interaction of passenger airbags with rear-facing infant restraints. This issue is of particular importance to vehicles with only front seats, such as pickup trucks and sport vehicles.
Technical Paper

Experimental and Analytical Study of Knee Fracture Mechanisms in a Frontal Knee Impact

1996-11-01
962423
The mechanisms of knee fracture were studied experimentally using cadaveric knees and analytically by computer simulation. Ten 90 degree flexed knees were impacted frontally by a 20 kg pendulum with a rigid surface, a 450 psi (3.103 MPa) crush strength and a 100 psi (0.689 MPa) crush strength aluminum honeycomb padding and a 50 psi (0.345 MPa) crush strength paper honeycomb padding at a velocity of about five m/s. During rigid surface impact, a patella fracture and a split condylar fracture were observed. The split condylar fracture was generated by the patella pushing the condyles apart, based on a finite element model using the maximum principal stress as the injury criterion. In the case of the 450 psi aluminum honeycomb padding, the split condylar fracture still occurred, but no patella fractures were observed because the honeycomb provided a more uniform distribution of patella load. No bony fractures in the knee area occurred for impacts with a 50 psi paper honeycomb padding.
Technical Paper

Age Effects on Thoracic Injury Tolerance

1996-11-01
962421
It is well known that the ability of the human body to withstand trauma is a function of its inherent strength, i.e., the strength of the bones and soft tissues. Yet, the properties of the bones and tissues change as a function of the individual's age. In this paper age effects on thoracic injury tolerances are studied by analyzing the mechanical properties of human bones and soft tissues and by examining experimental results found in the literature of thoracic impact tests to human cadavers. This work suggests that the adult age range can be divided into three age groups. Using piece-wise linear regression analyses, it has been determined that the reduction in injury tolerance from the “young” age group to the “elderly” group is approximately 20% under blunt frontal impact loading conditions and is as much as 70% under belt loading conditions.
Technical Paper

Investigation of Indy Car Crashes Using Impact Recorders

1996-12-01
962522
This paper describes the initial phases of an on-going project in the GM Motorsports Safety Technology Research Program to investigate Indy car crashes using an on-board impact recorder as the primary data collection tool. The development of a database consisting of crash investigation data patterned after national highway crash databases is discussed. The data gathered and coded includes track and incident scene information, vehicle damage, and driver injuries, as well as the vehicle decelerations measured by the impact recorder. The paper discusses the development of specifications for the impact device, the selection of the specific recorder and its implementation on a routine basis in Indy car racing. The results from incidents that produced significant data during the 1993, 1994 and 1995 racing seasons are summarized.
Technical Paper

Brain Injury Prediction for Indy Race Car Drivers Using Finite Element Model of the Human Head

2004-11-30
2004-01-3539
The objective of this work was to evaluate a new tool for assessing brain injury. Many race car drivers have suffered concussion and other brain injuries and are in need of ways of evaluating better head protective systems and equipment. Current assessment guidelines such as HIC may not be adequate for assessing all scenarios. Finite element models of the brain have the potential to provide much better injury prediction for any scenario. At a previous Motorsports conference, results of a MADYMO model of a racing car and driver driven by 3-D accelerations recorded in actual crashes were presented. Model results from nine cases, some with concussion and some not, yielded head accelerations that were used to drive the Wayne State University Head Injury Model (WSUHIM). This model consists of over 310,000 elements and is capable of simulating direct and indirect impacts. It has been extensively validated using published cadaveric test data.
Technical Paper

Sled Test Evaluation of Racecar Head/Neck Restraints Revisited

2004-11-30
2004-01-3516
At the 2002 MSEC, we presented a paper on the sled test evaluation of racecar head/neck restraint performance (Melvin, et al. 2002). Some individuals objected to the 3 msec clip filtering procedures used to eliminate artifactual spikes in the neck tension data for the HANS® device. As a result, we are presenting the same test data with the spikes left in the neck force data to reassure those individuals that these spikes did not significantly affect the results and conclusions of our original paper. In addition we will add new insights into understanding head/neck restraint performance gained during two more years of testing such systems. This paper re-evaluates the performance of three commercially available head/neck restraint systems using a stock car seating configuration and a realistic stock car crash pulse. The tests were conducted at an impact angle of 30 degrees to the right, with a midsize male Hybrid III anthropomorphic test device (ATD) modified for racecar crash testing.
X