Refine Your Search

Topic

null

Affiliation

Search Results

Journal Article

Investigations into the Effects of Thermal and Compositional Stratification on HCCI Combustion – Part II: Optical Engine Results

2009-04-20
2009-01-1106
The effect that thermally and compositionally stratified flowfields have on the spatial progression of iso-octane-fueled homogeneous charge compression ignition (HCCI) combustion were directly observed using highspeed chemiluminescence imaging. The stratified in-cylinder conditions were produced by independently feeding the intake valves of a four-valve engine with thermally and compositionally different mixtures of air, vaporized fuel, and argon. Results obtained under homogeneous conditions, acquired for comparison to stratified operation, showed a small natural progression of the combustion from the intake side to the exhaust side of the engine, a presumed result of natural thermal stratification created from heat transfer between the in-cylinder gases and the cylinder walls. Large differences in the spatial progression of the HCCI combustion were observed under stratified operating conditions.
Journal Article

Multiple-Event Fuel Injection Investigations in a Highly-Dilute Diesel Low Temperature Combustion Regime

2009-04-20
2009-01-0925
The objective of this research is a detailed investigation of multiple injections in a highly-dilute diesel low temperature combustion (LTC) regime. This research concentrates on understanding the performance and emissions benefits of multiple injections via experiments and simulations in a 0.48L signal cylinder light-duty engine operating at 2000 r/min and 5.5 bar IMEP. Controlled experiments in the single-cylinder engine are then combined with three computational tools, namely heat release analysis of measured cylinder pressure, a phenomenological spray model using in-cylinder thermodynamics [1], and KIVA-3V Chemkin CFD computations recently tested at LTC conditions [2]. This study examines the effects of fuel split distribution, injection event timing, rail pressure, and boost pressure which are each explored within a defined operation range in LTC.
Journal Article

Pathline Analysis of Full-cycle Four-stroke HCCI Engine Combustion Using CFD and Multi-Zone Modeling

2008-04-14
2008-01-0048
This paper investigates flow and combustion in a full-cycle simulation of a four-stroke, three-valve HCCI engine by visualizing the flow with pathlines. Pathlines trace massless particles in a transient flow field. In addition to visualization, pathlines are used here to trace the history, or evolution, of flow fields and species. In this study evolution is followed from the intake port through combustion. Pathline analysis follows packets of intake charge in time and space from induction through combustion. The local scalar fields traversed by the individual packets in terms of velocity magnitude, turbulence, species concentration and temperatures are extracted from the simulation results. The results show how the intake event establishes local chemical and thermal environments in-cylinder and how the species respond (chemically react) to the local field.
Journal Article

Development of the Diesel Exhaust Filtration Analysis System (DEFA)

2008-04-14
2008-01-0486
The development of the Diesel Exhaust Filtration Analysis system (DEFA), which utilizes a rectangular wafer of the same substrate material as used in a full-scale Diesel Particulate Filter (DPF), is presented in this paper. Washcoat variations of the wafer substrate (bare, washcoat, and catalyzed washcoat) were available for testing. With this setup, the complications of flow and temperature distribution that arise in the full-scale DPF can be significantly minimized while critical parameters that affect the filtration performance can be fully controlled. Cold flow experiments were performed to test the system's reliability, and determine the permeability of each wafer type. A Computational Fluid Dynamics (CFD) package was utilized to ensure the flow uniformity inside the filter holder during the cold flow test.
Journal Article

Study of High Speed Gasoline Direct Injection Compression Ignition (GDICI) Engine Operation in the LTC Regime

2011-04-12
2011-01-1182
An investigation of high speed direct injection (DI) compression ignition (CI) engine combustion fueled with gasoline (termed GDICI for Gasoline Direct-Injection Compression Ignition) in the low temperature combustion (LTC) regime is presented. As an aid to plan engine experiments at full load (16 bar IMEP, 2500 rev/min), exploration of operating conditions was first performed numerically employing a multi-dimensional CFD code, KIVA-ERC-Chemkin, that features improved sub-models and the Chemkin library. The oxidation chemistry of the fuel was calculated using a reduced mechanism for primary reference fuel combustion. Operation ranges of a light-duty diesel engine operating with GDICI combustion with constraints of combustion efficiency, noise level (pressure rise rate) and emissions were identified as functions of injection timings, exhaust gas recirculation rate and the fuel split ratio of double-pulse injections.
Journal Article

Gasoline DICI Engine Operation in the LTC Regime Using Triple- Pulse Injection

2012-04-16
2012-01-1131
An investigation of high speed direct injection (DI) compression ignition (CI) engine combustion fueled with gasoline injected using a triple-pulse strategy in the low temperature combustion (LTC) regime is presented. This work aims to extend the operation ranges for a light-duty diesel engine, operating on gasoline, that have been identified in previous work via extended controllability of the injection process. The single-cylinder engine (SCE) was operated at full load (16 bar IMEP, 2500 rev/min) and computational simulations of the in-cylinder processes were performed using a multi-dimensional CFD code, KIVA-ERC-Chemkin, that features improved sub-models and the Chemkin library. The oxidation chemistry of the fuel was calculated using a reduced mechanism for primary reference fuel combustion chosen to match ignition characteristics of the gasoline fuel used for the SCE experiments.
Journal Article

Passive Ammonia SCR System for Lean-burn SIDI Engines

2010-04-12
2010-01-0366
Lean-burn Spark Ignition Direct Injection (SIDI) engines offer potential fuel economy savings, however, lack of cost-effective lean NOx aftertreatment systems has hindered its broad application. Lean NO Trap (LNT) and Urea Selective Catalytic Reduction (SCR) technologies have been widely investigated as possible solutions, but they both have considerable drawbacks. LNT catalysts suffer from high Platinum Group Metals (PGM) cost, poor thermal durability, sulfur poisoning and active SO regeneration requirements. Urea SCR systems require a secondary fluid tank with an injection system, resulting in added system cost and complexity. Other concerns for urea SCR include potential freezing of the urea solution and the need for customers to periodically fill the urea reservoir. In this paper we report a low-cost, high efficiency concept that has the potential to be a key enabler for lean-burn gasoline engines.
Journal Article

Particulate Matter Sampling and Volatile Organic Compound Removal for Characterization of Spark Ignited Direct Injection Engine Emissions

2011-08-30
2011-01-2100
More stringent emissions regulations are continually being proposed to mitigate adverse human health and environmental impacts of internal combustion engines. With that in mind, it has been proposed that vehicular particulate matter (PM) emissions should be regulated based on particle number in addition to particle mass. One aspect of this project is to study different sample handling methods for number-based aerosol measurements, specifically, two different methods for removing volatile organic compounds (VOCs). One method is a thermodenuder (TD) and the other is an evaporative chamber/diluter (EvCh). These sample-handling methods have been implemented in an engine test cell with a spark-ignited direct injection (SIDI) engine. The engine was designed for stoichiometric, homogeneous combustion.
Technical Paper

Investigation of Mixing and Temperature Effects on HC/CO Emissions for Highly Dilute Low Temperature Combustion in a Light Duty Diesel Engine

2007-04-16
2007-01-0193
There is a significant global effort to study low temperature combustion (LTC) as a tool to achieve stringent emission standards with future light duty diesel engines. LTC utilizes high levels of dilution (i.e., EGR > 60% with <10%O2 in the intake charge) to reduce overall combustion temperatures and to lengthen ignition delay, This increased ignition delay provides time for fuel evaporation and reduces in-homogeneities in the reactant mixture, thus reducing NOx formation from local temperature spikes and soot formation from locally rich mixtures. However, as dilution is increased to the limits, HC and CO can significantly increase. Recent research suggests that CO emissions during LTC result from the incomplete combustion of under-mixed fuel and charge gas occurring after the premixed burn period [1, 2]1. The objective of the present work was to increase understanding of the HC/CO emission mechanisms in LTC at part-load.
Technical Paper

Modeling Iso-octane HCCI Using CFD with Multi-Zone Detailed Chemistry; Comparison to Detailed Speciation Data Over a Range of Lean Equivalence Ratios

2008-04-14
2008-01-0047
Multi-zone CFD simulations with detailed kinetics were used to model iso-octane HCCI experiments performed on a single-cylinder research engine. The modeling goals were to validate the method (multi-zone combustion modeling) and the reaction mechanism (LLNL 857 species iso-octane) by comparing model results to detailed exhaust speciation data, which was obtained with gas chromatography. The model is compared to experiments run at 1200 RPM and 1.35 bar boost pressure over an equivalence ratio range from 0.08 to 0.28. Fuel was introduced far upstream to ensure fuel and air homogeneity prior to entering the 13.8:1 compression ratio, shallow-bowl combustion chamber of this 4-stroke engine. The CFD grid incorporated a very detailed representation of the crevices, including the top-land ring crevice and head-gasket crevice. The ring crevice is resolved all the way into the ring pocket volume. The detailed grid was required to capture regions where emission species are formed and retained.
Technical Paper

Modeling of Soot Formation During DI Diesel Combustion Using a Multi-Step Phenomenological Model

1998-10-19
982463
Predictive models of soot formation during Diesel combustion are of great practical interest, particularly in light of newly proposed strict regulations on particulate emissions. A modified version of the phenomenological model of soot formation developed previously has been implemented in KIVA-II CFD code. The model includes major generic processes involved in soot formation during combustion, i.e., formation of soot precursors, formation of surface growth species, soot particle nucleation, coagulation, surface growth and oxidation. The formulation of the model within the KIVA-II is fully coupled with the mass and energy balances in the system. The model performance has been tested by comparison with the results of optical in-cylinder soot measurements in a single cylinder Cummins NH Diesel engine. The predicted soot volume fraction, number density and particle size agree reasonably well with the experimental data.
Technical Paper

Investigation into Different DPF Regeneration Strategies Based on Fuel Economy Using Integrated System Simulation

2009-04-20
2009-01-1275
An integrated system model containing sub-models for a multi-cylinder diesel engine, NOx and soot(PM) emissions, diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) has been developed to simulate the engine and aftertreatment systems at transient engine operating conditions. The objective of this work is two-fold; ensure correct implementation of the integrated system level model and apply the integrated model to understand the fuel economy trade-off for various DPF regeneration strategies. The current study focuses on a 1.9L turbocharged diesel engine and its exhaust system. The engine model was built in GT-Power and validated against experimental data at full-load conditions. The DPF model is calibrated for the current engine application by matching the clean DPF pressure drop for different mass flow rates. Load, boost pressure, speed and EGR controllers are tuned and linked with the current engine model.
Technical Paper

Investigation of the Effects of Cetane Number, Volatility, and Total Aromatic Content on Highly-Dilute Low Temperature Diesel Combustion

2010-04-12
2010-01-0337
The objective of this study is to increase fundamental understanding of the effects of fuel composition and properties on low temperature combustion (LTC) and to identify major properties that could enable engine performance and emission improvements, especially under high load conditions. A series of experiments and computational simulations were conducted under LTC conditions using 67% EGR with 9.5% inlet O₂ concentration on a single-cylinder version of the General Motors Corporation 1.9L direct injection diesel engine. This research investigated the effects of Cetane number (CN), volatility and total aromatic content of diesel fuels on LTC operation. The values of CN, volatility, and total aromatic content studied were selected in a DOE (Design of Experiments) fashion with each variable having a base value as well as a lower and higher level. Timing sweeps were performed for all fuels at a lower load condition of 5.5 bar net IMEP at 2000 rpm using a single-pulse injection strategy.
Technical Paper

A Computational Investigation into the Cool Flame Region in HCCI Combustion

2004-03-08
2004-01-0552
Multi-dimensional computational efforts using comprehensive and skeletal kinetics have been made to investigate the cool flame region in HCCI combustion. The work was done in parallel to an experimental study that showed the impact of the negative temperature coefficient and the cool flame on the start of combustion using different fuels, which is now the focus of the simulation work. Experiments in a single cylinder CFR research engine with n-butane and a primary reference fuel with an octane number of 70 (PRF 70) were modeled. A comparison of the pressure and heat release traces of the experimental and computational results shows the difficulties in predicting the heat release in the cool flame region. The behavior of the driving radicals for two-stage ignition is studied and is compared to the behavior for a single-ignition from the literature. Model results show that PRF 70 exhibits more pronounced cool flame heat release than n-butane.
Technical Paper

Sensitivity Analysis of a Diesel Exhaust System Thermal Model

2004-03-08
2004-01-1131
A modeling study has been conducted in order to characterize the heat transfer in an automotive diesel exhaust system. The exhaust system model, focusing on 2 exhaust pipes, has been created using a transient 1-D engine flow network simulation program. Model results are in excellent agreement with experimental data gathered before commencement of the modeling study. Predicted pipe exit stream temperatures are generally within one percent of experimental values. Sensitivity analysis of the model was the major focus of this study. Four separate variables were chosen for the sensitivity analysis. These being the external convective heat transfer coefficient, external emissivity, mass flow rate of exhaust gases, and amplitude of incoming pressure fluctuations. These variables were independently studied to determine their contribution to changes in exhaust gas stream temperature and system heat flux. There are two primary benefits obtained from conducting this analysis.
Technical Paper

In-Cylinder Measurement of Particulate Radiant Heat Transfer in a Direct Injection Diesel Engine

2003-03-03
2003-01-0072
A method of determining the total hemispherical in-cylinder radiant heat transfer of a direct injection diesel engine was developed using the Two Color theory. A radiant probe was installed in the head of a single cylinder test engine version of a Cummins N14 diesel engine to facilitate the optical measurement. Two probes, installed one at a time, were used to provide the data to calculate the hemispherical radiant heat flux. Each of the probes had a different field of view but both had a near-hemispherical field of view and used a window material that exhibits a cosine-normalized response. The radiant probes were designed to be self-cleaning and remained free of soot deposits during engine operation at high load. The test engine was operated at 1200 and 1500 RPM and at 50, 75, and 100% load for each engine speed. At each operating combination of engine speed and load, measurements were made at several injection timings.
Technical Paper

Zero-Dimensional Soot Modeling

2003-03-03
2003-01-1070
A zero-dimension model of spray development and particulate emissions for direct-injection combustion was developed. The model describes the major characteristics of the injection plume including: spray angle, liquid penetration, lift-off length, and temperatures of regions within the spray. The model also predicts particulate mass output over a span of combustion cycles, as well as a particulate mass-history over a single combustion event. The model was developed by applying established conceptual models for direct injection combustion to numerical relations, to develop a mathematical description of events. The model was developed in a Matlab Simulink environment to promote modularity and ease of use.
Technical Paper

Computations of a Two-Stroke Engine Cylinder and Port Scavenging Flows

1991-02-01
910672
A modification of the computational fluid dynamics code KIVA-II is presented that allows computations to be made in complex engine geometries. An example application is given in which three versions of KIVA-II are run simultaneously. Each version considers a separate block of the computational domain, and the blocks exchange boundary condition information with each other at their common interfaces. The use of separate blocks permits the connectedness of the overall computational domain to change with time. The scavenging flow in the cylinder, transfer pipes (ports), and exhaust pipe of a ported two-stroke engine with a moving piston was modeled in this way. Results are presented for three engine designs that differ only in the angle of their boost ports. The calculated flow fields and the resulting fuel distributions are shown to be markedly different with the different geometries.
Technical Paper

Three-Way Catalyst Design for Urealess Passive Ammonia SCR: Lean-Burn SIDI Aftertreatment System

2011-04-12
2011-01-0306
Lean-burn SIDI engine technology offers improved fuel economy; however, the reduction of NOx during lean-operation continues to be a major technical hurdle in the implementation of energy efficient technology. There are several aftertreatment technologies, including the lean NOx trap and active urea SCR, which have been widely considered, but they all suffer from high material cost and require customer intervention to fill the urea solution. Recently reported passive NH₃-SCR system - a simple, low-cost, and urea-free system - has the potential to enable the implementation of lean-burn gasoline engines. Key components in the passive NH₃-SCR aftertreatment system include a close-coupled TWC and underfloor SCR technology. NH₃ is formed on the TWC with short pulses of rich engine operation and the NH₃ is then stored on the underfloor SCR catalysts.
Technical Paper

Thermodynamic Benefits of Opposed-Piston Two-Stroke Engines

2011-09-13
2011-01-2216
A detailed thermodynamic analysis was performed to demonstrate the fundamental efficiency advantage of an opposed-piston two-stroke engine over a standard four-stroke engine. Three engine configurations were considered: a baseline six-cylinder four-stroke engine, a hypothetical three-cylinder opposed-piston four-stroke engine, and a three-cylinder opposed-piston two-stroke engine. The bore and stroke per piston were held constant for all engine configurations to minimize any potential differences in friction. The closed-cycle performance of the engine configurations were compared using a custom analysis tool that allowed the sources of thermal efficiency differences to be identified and quantified.
X