Refine Your Search

Topic

Author

Affiliation

Search Results

Video

A Method for Testing GPS in Obstructed Environments Where GPS/INS Reference Systems Can Be Ineffective

2011-11-17
When vehicles share certain information wirelessly via Dedicated Short Range Communications (DSRC), they enable a new layer of electronic vehicle safety that, when needed, can generate warnings to drivers and even initiate automatic preventive actions. Vehicle location and velocity provided by Global Navigation Systems (GNSS), including GPS, are key in allowing vehicle path estimation. GNSS is effective in accurately determining a vehicle's location coordinates in most driving environments, but its performance suffers from obstructions in dense urban environments. To combat this, augmentations to GNSS are being contemplated and tested. This testing has been typically done using a reference GNSS system complimented by expensive military-grade inertial sensors, which can still fail to provide adequate reference performance in certain environments.
Video

Market Analysis Mini-e

2011-11-21
We report here results from first year of the BMW MINI E deployment. BMW deployed 450 MINI E?s to North America. Nearly 50% were leased by households in Los Angeles and the New York area. PH&EV Center researchers surveyed MINI E drivers throughout their year with the vehicles, focusing on the experiences of 50 households who volunteered for more detailed interviews. We report here their experiences with driving electric vehicles, adaptions to daily range limitations, and using electricity as a fuel. Presenter Thomas Turrentine, Univ. of California-Davis
Video

Can America Plug In?

2011-11-04
ECOtality North America, in partnership with the Idaho National Laboratory (INL), Nissan North America, General Motors, and over 40 government, electric utility, and private organizations, has launched a large-scale demonstration of electric vehicle charging infrastructure. This demonstration, called The EV Project, will deploy more than 15,000 level 2 and DC fast chargers in private residence, commercial, and public locations in seven market areas in Arizona, California, Oregon, Tennessee, Texas, Washington state, and Washington, D.C. The EV Project will also include a total of 5,700 Nissan Leaf battery electric vehicles and 2,600 Chevrolet Volt extended range electric vehicles, operated by consumers and fleets in each of the market areas. This demonstration, which is funded by the U.S. Department of Energy�s (DOE) Vehicle Technologies Program, represents the largest ever deployment of electric vehicles and charging infrastructure.
Video

Eurocae WG-72 Activities

2012-03-16
The presentation provides an overview about the activities of Eurocae Working Group 72 (WG-72) starting with a brief synopsis of the context which suggested why such a committee should be established in 2006. It then goes into further detail about the drivers for the work of the committee, which call for the products to be delivered. It addresses some of the challenges with respect to its users. It points out that one of the lessons the committee learned was importance of the focus on the users, such that the products provide their maximum utility. Hence, the users should better be among the participants to achieve this objective. Other industries have dealt with the subject of Information System (or Cyber-Physical) Security long before this industry was forced to consider it. Consequently there are many industry standards and national or international norms, which may help to develop what is deemed needed for Civil Aviation.
Video

New Particulate Matter Sensor for On Board Diagnosis

2012-02-16
The presentation describes technology developments and the integration of these technologies into new emission control systems. As in other years, the reader will find a wide range of topics from various parts of the world. This is reflective of the worldwide scope and effort to reduce diesel exhaust emissions. Topics include the integration of various diesel particulate matter (PM) and Nitrogen Oxide (NOx) technologies as well as sensors and other emissions related developments. Presenter Atsuo Kondo, NGK Insulators, Ltd.
Video

The Correlation of As-Manufactured Products to As-Designed Specifications: Closing the Loop on Dimensional Quality Results to Engineering Predictions

2012-03-09
Simulation-based tolerance analysis is the accepted standard for dimensional engineering in aerospace today. Sophisticated 3D model-based tolerance analysis processes enable engineers to measure variation in complex, often large, assembled products quickly and accurately. Best-in-class manufacturers have adopted Quality Intelligence Management tools for collecting and consolidating this measurement data. Their goal is to completely understand dimensional fit characteristics and quality status before commencing the build process. This results in shorter launch cycles, improved process capabilities, reduced scrap and less production downtime. This paper describes how to use simulation-based approaches to correlate the theoretical tolerance analysis results produced during engineering simulations to actual as-built results. This allows engineers to validate or adjust as-designed simulation parameters to more closely align to production process capabilities.
Video

Orbital Drilling Machine for One Way Assembly in Hard Materials

2012-03-23
In Aeronautic industry, when we launch a new industrialization for an aircraft sub assembly we always have the same questions in mind for drilling operations, especially when focusing on lean manufacturing. How can we avoid dismantling and deburring parts after drilling operation? Can a drilling centre perform all the tasks needed to deliver a hole ready to install final fastener? How can we decrease down-time of the drilling centre? Can a drilling centre be integrated in a pulse assembly line? How can we improve environmental efficiency of a drilling centre? It is based on these main drivers that AIRBUS has developed, with SPIE and SOS, a new generation of drilling centre dedicated for hard materials such as titanium, and high thicknesses. The first application was for the assembly of the primary structure of A350 engine pylons. The main solution that was implemented meeting several objectives was the development of orbital drilling technology in hard metal stacks.
Video

GreenZone Driving for Plug In Hybrid Electric Vehicles

2012-05-29
Impact of driving patterns on fuel economy is significant in hybrid electric vehicles (HEVs). Driving patterns affect propulsion and braking power requirement of vehicles, and they play an essential role in HEV design and control optimization. Driving pattern conscious adaptive strategy can lead to further fuel economy improvement under real-world driving. This paper proposes a real-time driving pattern recognition algorithm for supervisory control under real-world conditions. The proposed algorithm uses reference real-world driving patterns parameterized from a set of representative driving cycles. The reference cycle set consists of five synthetic representative cycles following the real-world driving distance distribution in the US Midwestern region. Then, statistical approaches are used to develop pattern recognition algorithm. Driving patterns are characterized with four parameters evaluated from the driving cycle velocity profiles.
Video

Safety Element out of Context - A Practical Approach

2012-05-22
ISO 26262 is the actual standard for Functional Safety of automotive E/E (Electric/Electronic) systems. One of the challenges in the application of the standard is the distribution of safety related activities among the participants in the supply chain. In this paper, the concept of a Safety Element out of Context (SEooC) development will be analyzed showing its current problematic aspects and difficulties in implementing such an approach in a concrete typical automotive development flow with different participants (e.g. from OEM, tier 1 to semiconductor supplier) in the supply chain. The discussed aspects focus on the functional safety requirements of generic hardware and software development across the supply chain where the final integration of the developed element is not known at design time and therefore an assumption based mechanism shall be used.
Video

On-Road Evaluation of an Integrated SCR and Continuously Regenerating Trap Exhaust System

2012-06-18
Four-way, integrated, diesel emission control systems that combine selective catalytic reduction for NOx control with a continuously regenerating trap to remove diesel particulate matter were evaluated under real-world, on-road conditions. Tests were conducted using a semi-tractor with an emissions year 2000, 6-cylinder, 12 L, Volvo engine rated at 287 kW at 1800 rpm and 1964 N-m. The emission control system was certified for retrofit application on-highway trucks, model years 1994 through 2002, with 4-stroke, 186-373 kW (250-500 hp) heavy-duty diesel engines without exhaust gas recirculation. The evaluations were unique because the mobile laboratory platform enabled evaluation under real-world exhaust plume dilution conditions as opposed to laboratory dilution conditions. Real-time plume measurements for NOx, particle number concentration and size distribution were made and emission control performance was evaluated on-road.
Journal Article

Analysis of Driving Performance Based on Driver Experience and Vehicle Familiarity: A UTDrive/Mobile-UTDrive App Study

2019-11-21
Abstract A number of studies have shown that driving an unfamiliar vehicle has the potential to introduce additional risk, especially for novice drivers. However, such studies have generally used statistical methods based on analyzing crash and near-crash data from a range of driver groups, and therefore the evaluation has the potential to be subjective and limited. For a more objective perspective, this study suggests that it would be worthwhile to consider vehicle dynamic signals obtained from the Controller Area Network (CAN-Bus) and smartphones. This study, therefore, is focused on the effect of driver experience and vehicle familiarity for issues in driver modeling and distraction. Here, a group of 20 drivers participated in our experiment, with 13 of them having participated again after a one-year time lapse in order for analysis of their change in driving performance.
Journal Article

A Personalized Lane-Changing Model for Advanced Driver Assistance System Based on Deep Learning and Spatial-Temporal Modeling

2019-11-14
Abstract Lane changes are stressful maneuvers for drivers, particularly during high-speed traffic flows. However, modeling driver’s lane-changing decision and implementation process is challenging due to the complexity and uncertainty of driving behaviors. To address this issue, this article presents a personalized Lane-Changing Model (LCM) for Advanced Driver Assistance System (ADAS) based on deep learning method. The LCM contains three major computational components. Firstly, with abundant inputs of Root Residual Network (Root-ResNet), LCM is able to exploit more local information from the front view video data. Secondly, the LCM has an ability of learning the global spatial-temporal information via Temporal Modeling Blocks (TMBs). Finally, a two-layer Long Short-Term Memory (LSTM) network is used to learn video contextual features combined with lane boundary based distance features in lane change events.
Journal Article

Improvement in Gear Shift Comfort by Reduction in Double Bump Force of Passenger Vehicles

2017-10-08
Abstract In today’s competitive automobile market, driver comfort is at utmost importance and the bar is being raised continuously. Gear Shifting is a crucial customer touch point. Any issue or inconvenience caused while shifting gear can result into customer dissatisfaction and will impact the brand image. While there are continual efforts being taken by most of the car manufactures, “Double Bump” in gearshift has remained as a pain area and impact severely on the shift feel. This is more prominent in North-South (N-S) transmissions. In this paper ‘Double Bump’ is a focus area and a mathematical / analytical approach is demonstrated by analyzing ‘impacting parameters’ and establishing their co-relation with double bump. Additionally, the results are also verified with a simulation model.
Journal Article

Influence of Intelligent Active Suspension System Controller Design Techniques on Vehicle Braking Characteristics

2018-12-04
Abstract This article presents a comprehensive investigation for the interaction between vehicle ride vibration control and braking control using two degrees of freedom (2DOF) quarter vehicle model. A typical limited bandwidth active suspension system with nonlinear spring and damping characteristics of practical hydraulic and pneumatic components is controlled to regulate both suspension and tire forces and therefore provide the optimum ride comfort and braking performance of an anti-lock brake system (ABS). In order to design a suitable controller for this nonlinear integrated system, various control techniques are followed including state feedback tuned using Linear Quadratic Regulator (LQR), state feedback tuned using Genetic Algorithm (GA), Proportional Integrated (PI) tuned genetically, and Fuzzy Logic Control (FLC). The ABS control system is designed to limit skid ratio below threshold of 15%.
Journal Article

Nonlinear Iterative Optimization Process for Multichannel Remote Parameter Control

2019-10-14
Abstract In this article, compared with traditional Remote Parameter Control (RPC), the iterative process is improved based on linear transfer function (TF) estimation of the nonlinear dynamic system. In the improved RPC, the iteration coefficient is designed according to the convergence condition of the nonlinear iterative process, so that the convergence level, convergence speed, and iteration stability could be improved. The difference between the traditional and the improved RPC iterative process is discussed, the RPC iterative process of the nonlinear system is analyzed, and channel decoupling for Multi-Input Multi-Output (MIMO) system based on eigen-decomposition of the system TF and linear TF estimation is introduced. It assumes that the eigenvector matrix of the system TF remains the same, and the linear TF in the iterative process is estimated and updated, which is used for iterative calculation.
Journal Article

Application of Optimal Control Method to Path Tracking Problem of Vehicle

2019-08-26
Abstract Path tracking is an essential stage for vehicle safety control. It is more newsworthy than ever in the automotive context and especially for autonomous vehicle. The study proposes an optimal control method for path tracking problem in inverse vehicle handling dynamics. The proposed method generates an expected trajectory which guarantees minimum clearance to the prescribed path by identifying the optimal steering torque input. Based on this purpose, the path tracking problem, which is treated as an optimal control problem, is then solved by local collocation method and mesh refinement. Finally, a real vehicle test is executed to verify the rationality of the proposed model and methodology. The results show that using control variables as a mesh refinement function can capture the dramatic changes in state variables, and the efficiency improvement is more significant as the number of the grid points increases.
Journal Article

Mathematical Model of Heat-Controlled Accumulator (HCA) for Microgravity Conditions

2020-01-20
Abstract It is reasonable to use a two-phase heat transfer loop (TPL) in a thermal control system (TCS) of spacecraft with large heat dissipation. One of the key elements of TPL is a heat-controlled accumulator (HCA). The HCA represents a volume which is filled with vapor and liquid of a single working fluid without bellows. The pressure in a HCA is controlled by the heater. The heat and mass transfer processes in the HCA can proceed with a significant nonequilibrium. This has implications on the regulation of TPL. This article presents a mathematical model of nonequilibrium heat and mass transfer processes in an HCA for microgravity conditions. The model uses the equations of mass and energy conservation separately for the vapor and liquid phases. Interfacial heat and mass transfer is also taken into account. It proposes to use the convective component k for the level of nonequilibrium evaluation.
Journal Article

Adaptive Transmission Shift Strategy Based on Online Characterization of Driver Aggressiveness

2018-06-04
Abstract Commercial vehicles contribute to the majority of freight transportation in the United States. They are also significant fuel consumers, with over 23% of fuel used in transportation in the United States. The gas price volatility and increasingly stringent regulation on greenhouse-gas emissions have driven manufacturers to adopt new fuel-efficient technologies. Among others, an advanced transmission control strategy, which can provide tangible improvement with low incremental cost. In the commercial sector, individual drivers have little or no interest in vehicle fuel economy, contrary to fleet owners. Aggressive driving behavior can greatly increase the real-world vehicle fuel consumption. However, the effectiveness of transmission calibration to match the shift strategy to the driving characteristics is still a challenge.
Journal Article

Hydro-Pneumatic Energy Harvesting Suspension System Using a PSO Based PID Controller

2018-08-01
Abstract In this article, a unique design for Hydro-Pneumatic Energy Harvesting Suspension HPEHS system is introduced. The design includes a hydraulic rectifier to maintain one-way flow direction in order to obtain maximum power generation from the vertical oscillation of the suspension system and achieve handling and comfort car drive. A mathematical model is presented to study the system dynamics and non-linear effects for HPEHS system. A simulation model is created by using Advanced Modeling Environment Simulations software (AMEsim) to analyze system performance. Furthermore, a co-simulation platform model is developed using Matlab-Simulink and AMEsim to optimize the PID controller parameters of the external variable load resistor applied on the generator by using Particle Swarm Optimization (PSO).
Journal Article

Development of a Learning Capability in Virtual Operator Models

2019-03-14
Abstract This research developed methods for a virtual operator model (VOM) to learn the optimal control inputs for operation of a virtual excavator. Virtual design, used to model, simulate, and test new features, has often been limited by the fidelity of the virtual model of human operators. Human operator learns, over time, the capability, limits, and control characteristics of new vehicles to develop the best strategy to maximize the efficiency of operation. However, VOMs are developed with fixed strategies and for specific vehicle models (VMs) and require time-consuming re-tuning of the VOM for each new vehicle design. Thus, there typically is no capability to optimize strategies, taking account of variation in vehicle capabilities and limitations. A VOM learning capability was developed to optimize control inputs for the swing-to-pile task of a trenching operation. Different control strategies consisted of varied combinations of speed control, position control, and coast.
X