Refine Your Search

Search Results

Viewing 1 to 14 of 14
Journal Article

Loading Path Dependence of Forming Limit Diagram of a TRIP800 Steel

2011-04-12
2011-01-0019
In this paper, the microstructure-based finite element modeling method is used in investigating the loading path dependence of formability of transformation induced plasticity (TRIP) steels. For this purpose, the effects of different loading path on the forming limit diagrams (FLD) of TRIP steels are qualitatively examined using the representative volume element (RVE) of a commercial TRIP800 steel. First, the modeling method was introduced, where a combined isotropic/kinematic hardening rule is adopted for the constituent phases in order to correctly describe the cyclic deformation behaviors of TRIP steels during the forming process with combined loading paths which may include the unloading between the two consecutive loadings. Material parameters for the constituent phases remained the same as those in the authors' previous study [ 1 ] except for some adjustments for the martensite phase due to the introduction of the new combined hardening rule.
Journal Article

Carbon and Manganese Effects on Quenching and Partitioning Response of CMnSi-Steels

2015-04-14
2015-01-0530
Quenching and partitioning (Q&P) is a novel heat treatment to produce third generation advanced high-strength steels (AHSS). The influence of carbon on mechanical properties of Q&P treated CMnSi-steels was studied using 0.3C-1.5Mn-1.5Si and 0.4C-1.5Mn-1.5Si alloys. Full austenitization followed by two-step Q&P treatments were conducted using varying partitioning times and a fixed partitioning temperature of 400 °C. The results were compared to literature data for 0.2C-1.6Mn-1.6Si, 0.2-3Mn-1.6Si and 0.3-3Mn-1.6Si Q&P treated steels. The comparison showed that increasing the carbon content from 0.2 to 0.4 wt pct increased the ultimate tensile strength by 140 MPa per 0.1 wt pct C up to 1611 MPa without significantly decreasing ductility for the partitioning conditions used. Increased alloy carbon content did not substantially increase the retained austenite fractions. The best combinations of ultimate tensile strength and total elongation were obtained using short partitioning times.
Technical Paper

Effects of Manufacturing Processes and In-Service mperature Variations on the Properties of TRIP Steels

2007-04-16
2007-01-0793
This paper examines some key aspects of the manufacturing process that “ Transformation Induced Plasticity” (TRIP) steels would be exposed to, and systematically evaluate how the forming and thermal histories affect final strength and ductility of the material. We evaluate the effects of in-service temperature variations, such as under hood and hot/cold cyclic conditions, to determine whether these conditions influence final strength, ductility and energy absorption characteristics of several available TRIP steel grades. As part of the manufacturing thermal environment evaluations, stamping process thermal histories are included in the studies. As part of the in-service conditions, different pre-straining levels are included. Materials from four steel suppliers are examined. The thermal/straining history versus material property relationship is established over a full range of expected thermal histories and selected loading modes.
Technical Paper

Effects of Forming Induced Phase Transformation on Crushing Behavior of TRIP Steel

2010-04-12
2010-01-0216
In this paper, results of finite element crash simulation are presented for a TRIP steel side rail with and without considering the phase transformation during forming operations. A homogeneous phase transformation model is adapted to model the mechanical behavior of the austenite-to-martensite phase. The forming process of TRIP steels is simulated with the implementation of the material model. The distribution and volume fraction of the martensite in TRIP steels may be greatly influenced by various factors during forming process and subsequently contribute to the behavior of the formed TRIP steels during the crushing process. The results indicate that, with the forming induced phase transformation, higher energy absorption of the side rail can be achieved. The phase transformation enhances the strength of the side rail.
Technical Paper

Integrated Computational Materials Engineering (ICME) Multi-Scale Model Development for Advanced High Strength Steels

2017-03-28
2017-01-0226
This paper presents development of a multi-scale material model for a 980 MPa grade transformation induced plasticity (TRIP) steel, subject to a two-step quenching and partitioning heat treatment (QP980), based on integrated computational materials engineering principles (ICME Model). The model combines micro-scale material properties defined by the crystal plasticity theory with the macro-scale mechanical properties, such as flow curves under different loading paths. For an initial microstructure the flow curves of each of the constituent phases (ferrite, austenite, martensite) are computed based on the crystal plasticity theory and the crystal orientation distribution function. Phase properties are then used as an input to a state variable model that computes macro-scale flow curves while accounting for hardening caused by austenite transformation into martensite under different straining paths.
Technical Paper

Relationship between Material Properties and Local Formability of DP980 Steels

2012-04-16
2012-01-0042
A noticeable degree of inconsistent forming behaviors has been observed for the 1st generation advanced high strength steels (AHSS) in production, and they appear to be associated with the inherent microstructural-level inhomogeneities for various AHSS. This indicates that the basic material property requirements and screening methods currently used for the mild steels and high strength low alloys (HSLA) are no longer sufficient for qualifying today's AHSS. In order to establish more relevant material acceptance criteria for AHSS, the fundamental understandings on key mechanical properties and microstructural features influencing the local formability of AHSS need to be developed. For this purpose, in this study, DP980 was selected as model steels and eight different types of DP980 sheet steels were acquired from various steel suppliers.
Technical Paper

Comparison of Hole Expansion Properties of Quench & Partitioned, Quench & Tempered and Austempered Steels

2012-04-16
2012-01-0530
Quenching & Partitioning (Q&P) is receiving increased attention as a novel Advanced High Strength Steel (AHSS) processing route as promising tensile properties of the “third generation” have been reported. The current contribution reports hole expansion ratios (HER) of Q&P steels and compares the values with HERs obtained for “conventional” AHSS processing routes such as austempering and Quench & Tempering (Q&T). Intercritically annealed C-Mn-Al-Si-P and fully austenitized C-Mn-Si microstructures were studied. Optimum combinations of tensile strength and HER were obtained for fully austenitized C-Mn-Si Q&P samples. Higher HER values were obtained for Q&P than for Q&T steels for similar tempering/partitioning temperatures. Austempering following intercritical annealing results in higher HER than Q&P at similar tensile strength levels. In contrast, Q&P following full austenitization results in higher hole expansion than austempering even at higher strength levels.
Technical Paper

Effects of Fusion Zone Size on Failure Modes and Performance of Advanced High Strength Steel Spot Welds

2006-04-03
2006-01-0531
This paper examines the effects of fusion zone size on failure modes, static strength and energy absorption of resistance spot welds (RSW) of advanced high strength steels (AHSS). DP800 and TRIP800 spot welds are considered. The main failure modes for spot welds are nugget pull-out and interfacial fracture. Partial interfacial fracture is also observed. The critical fusion zone sizes to ensure nugget pull-out failure mode are developed for both DP800 and TRIP800 using the limit load based analytical model and the microhardness measurements of the weld cross sections. Static weld strength tests using cross-tension samples were performed on the joint populations with controlled fusion zone sizes. The resultant peak load and energy absorption levels associated with each failure mode were studied using statistical data analysis tools. The results of this study show that the conventional weld size of can not produce nugget pull-out mode for both the DP800 and TRIP800 materials.
Technical Paper

Effects of Constituent Properties on Performance Improvement of a Quenching and Partitioning Steel

2014-04-01
2014-01-0812
In this paper, a two-dimensional microstructure-based finite element modeling method is adopted to investigate the effects of material parameters of the constituent phases on the macroscopic tensile behavior of Q&P steel and to perform a computational material design approach for performance improvement. For this purpose, a model Q&P steel is first produced and various experiments are then performed to characterize the model steel. Actual microstructure-based model is generated based on the information from EBSD, SEM and nano-indentation test, and the material properties for the constituent phases in the model are determined based on the initial constituent properties from HEXRD test and the subsequent calibration of model predictions to tensile test results. The influence of various material parameters of the constituents on the macroscopic behavior is then investigated.
Technical Paper

Formability Characterization of 3rd Generation Advanced High-Strength Steel and Application to Forming a B-Pillar

2021-04-06
2021-01-0267
The objective of this study was to assess the formability of two 3rd generation advanced high strength steels (3rd Gen AHSS) with ultimate strengths of 980 and 1180 MPa and evaluate their applicability to a structural B-Pillar for a mid-sized sport utility vehicle. The constitutive behavior including strain-rate effects and formability were characterized to generate the material models for use within AutoForm R8 software to design the B-pillar tooling and forming process. An extended Bressan-Williams instability model was able to deterministically predict the forming limit curves obtained using Marciniak tests. The tooling for the representative B-pillar was designed and fabricated with Bowman Precision Tooling and forming trials conducted for both 3rd Gen steels that had a thickness of 1.4 mm.
Technical Paper

Integrated Computational Materials Engineering (ICME) for Third Generation Advanced High-Strength Steel Development

2015-04-14
2015-01-0459
This paper presents an overview of a four-year project focused on development of an integrated computational materials engineering (ICME) toolset for third generation advanced high-strength steels (3GAHSS). Following a brief look at ICME as an emerging discipline within the Materials Genome Initiative, technical tasks in the ICME project will be discussed. Specific aims of the individual tasks are multi-scale, microstructure-based material model development using state-of-the-art computational and experimental techniques, forming, toolset assembly, design optimization, integration and technical cost modeling. The integrated approach is initially illustrated using a 980MPa grade transformation induced plasticity (TRIP) steel, subject to a two-step quenching and partitioning (Q&P) heat treatment, as an example.
Journal Article

Bake Hardening Behavior of DP, TBF, and PHS Steels with Ultimate Tensile Strengths Exceeding 1 GPa

2020-04-14
2020-01-0536
Third generation advanced high strength steels (AHSS) have been developed combining high strength and formability, allowing for lightweighting of vehicle structural components. These AHSS components are exposed to paint baking operations ranging in time and temperature to cure the applied paint. The paint baking treatment, combined with straining induced from part forming, may lead to increased in-service component performance due to a strengthening mechanism known as bake hardening. This study aims to quantify the bake hardening behavior of select AHSS grades. Materials investigated were press hardenable steels (PHS) 1500 and 2000; transformation induced plasticity (TRIP) aided bainitic ferrite (TBF) 1000 and 1200; and dual phase (DP) 1000. The number designations of these grades refer to minimum as-received ultimate tensile strengths in MPa. Paint baking was simulated using industrially relevant times and temperatures from 15 to 60 min and 120 to 200 °C, respectively.
Journal Article

Constitutive, Formability, and Fracture Characterization of 3rd Gen AHSS with an Ultimate Tensile Strength of 1180 MPa

2021-04-06
2021-01-0308
The superior formability and local ductility of the emerging class of third generation of advanced high-strength steels (3rd Gen AHSS) compared to their conventional counterparts of the same strength level offer significant advantages for automotive lightweighting and enhanced crash performance. Nevertheless, studies on the material behavior of 3rd Gen AHSS have been limited and there is some uncertainty surrounding the applicability of developed methodologies for conventional dual-phase (DP) steels to this new class of AHSS. The present paper provides a comprehensive study on the quasi-static and dynamic constitutive behavior, formability characterization and prediction, and the fracture behavior of two commercial 3rd Gen AHSS with an ultimate strength of 1180 MPa that will be contrasted with a conventional DP1180. The hardening response to large strain levels was determined experimentally using tensile and shear tests and then validated with 3-D simulations of tensile tests.
Journal Article

Application of Nano-Indentation Test in Estimating Constituent Phase Properties for Microstructure-Based Modeling of Multiphase Steels

2017-03-28
2017-01-0372
For multiphase advanced high strength steels (AHSS), the constituent phase properties play a crucial role in determining the overall mechanical behaviors. Therefore, it is important to accurately measure/estimate the constituent phase properties in the research of AHSS. In this study, a new nanoindentation-based inverse method that we developed was adopted in estimating the phase properties of a low alloy Quenching and Partitioning (Q&P) steel. A microstructure-based Finite Element (FE) model was also generated based on the Electron BackScatter Diffraction (EBSD) and Scanning Electron Microscopy (SEM) images of the Q&P steel. The phase properties estimated from nanoindentation were first compared with those estimated from in-situ High Energy X-Ray Diffraction (HEXRD) test and, then, employed in the generated FE model to examine whether they can be appropriately used as the input properties for the model.
X