Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Improved Chemical Kinetics Numerics for the Efficient Simulation of Advanced Combustion Strategies

2014-04-01
2014-01-1113
The incorporation of detailed chemistry models in internal combustion engine simulations is becoming mandatory as local, globally lean, low-temperature combustion strategies are setting the path towards a more efficient and environmentally sustainable use of energy resources in transportation. In this paper, we assessed the computational efficiency of a recently developed sparse analytical Jacobian chemistry solver, namely ‘SpeedCHEM’, that features both direct and Krylov-subspace solution methods for maximum efficiency for both small and large mechanism sizes. The code was coupled with a high-dimensional clustering algorithm for grouping homogeneous reactors into clusters with similar states and reactivities, to speed-up the chemical kinetics solution in multi-dimensional combustion simulations.
Journal Article

A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

2016-04-05
2016-01-0734
The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.
Technical Paper

A Numerical Study on the Ignition of Lean CH4/Air Mixture by a Pre-Chamber-Initiated Turbulent Jet

2020-04-14
2020-01-0820
To provide insights into the fundamental characteristics of pre-chamber combustion engines, the ignition of lean premixed CH4/air due to hot gas jets initiated by a passive narrow throated pre-chamber in a heavy-duty engine was studied computationally. A twelve-hole pre-chamber geometry was investigated using CONVERGETM software. The numerical model was validated against the experimental results. To elucidate the main-chamber ignition mechanism, the spark plug location and spark timing were varied, resulting in different pressure gradient during turbulent jet formation. Different ignition mechanisms were observed for turbulent jet ignition of lean premixed CH4/air, based on the geometry effect. Ignition behavior was classified into the flame and jet ignition depending on the significant presence of hot active radicals. The jet ignition, mainly due to hot product gases was found to be advanced by the addition of a small concentration of radicals.
Journal Article

Assessment of Optimization Methodologies to Study the Effects of Bowl Geometry, Spray Targeting and Swirl Ratio for a Heavy-Duty Diesel Engine Operated at High-Load

2008-04-14
2008-01-0949
In the present paper optimization tools are used to recommend low-emission engine combustion chamber designs, spray targeting and swirl ratio levels for a heavy-duty diesel engine operated at high-load. The study identifies aspects of the combustion and pollution formation that are affected by mixing processes, and offers guidance for better matching of the piston geometry with the spray plume geometry for enhanced mixing. By coupling a GA (genetic algorithm) with the KIVA-CFD code, and also by utilizing an automated grid generation technique, multi-objective optimizations with goals of low emissions and fuel economy were achieved. Three different multi-objective genetic algorithms including a Micro-Genetic Algorithm (μGA), a Nondominated Sorting Genetic Algorithm II (NSGA II) and an Adaptive Range Multi-Objective Genetic Algorithm (ARMOGA) were compared for conducting the optimization under the same conditions.
Journal Article

The Impact of a Non-Linear Turbulent Stress Relationship on Simulations of Flow and Combustion in an HSDI Diesel Engine

2008-04-14
2008-01-1363
In-cylinder flow and combustion processes simulated with the standard k-ε turbulence model and with an alternative model-employing a non-linear, quadratic equation for the turbulent stresses-are contrasted for both motored and fired engine operation at two loads. For motored operation, the differences observed in the predictions of mean flow development are small and do not emerge until expansion. Larger differences are found in the spatial distribution and magnitude of turbulent kinetic energy. The non-linear model generally predicts lower energy levels and larger turbulent time scales. With fuel injection and combustion, significant differences in flow structure and in the spatial distribution of soot are predicted by the two models. The models also predict considerably different combustion efficiencies and NOx emissions.
Journal Article

Optimization of a HSDI Diesel Engine for Passenger Cars Using a Multi-Objective Genetic Algorithm and Multi-Dimensional Modeling

2009-04-20
2009-01-0715
A multi-objective genetic algorithm coupled with the KIVA3V release 2 code was used to optimize the piston bowl geometry, spray targeting, and swirl ratio levels of a high speed direct injected (HSDI) diesel engine for passenger cars. Three modes, which represent full-, mid-, and low-loads, were optimized separately. A non-dominated sorting genetic algorithm II (NSGA II) was used for the optimization. High throughput computing was conducted using the CONDOR software. An automated grid generator was used for efficient mesh generation with variable geometry parameters, including open and reentrant bowl designs. A series of new spray models featuring reduced mesh dependency were also integrated into the code. A characteristic-time combustion (CTC) model was used for the initial optimization for time savings. Model validation was performed by comparison with experiments for the baseline engine at full-, mid-, and low-load operating conditions.
Journal Article

Sensitivity Analysis Study on Ethanol Partially Premixed Combustion

2013-04-08
2013-01-0269
Partially Premixed Combustion (PPC) is a combustion concept which aims to provide combustion with low smoke and NOx with high thermal efficiency. Extending the ignition delay to enhance the premixing, avoiding spray-driven combustion and controlling the combustion temperature at an optimum level through use of suitable lambda and EGR levels have been recognized as key factors to achieve such a combustion. Fuels with high ignitability resistance have been proven to be a useful to extend the ignition delay. In this work pure ethanol has been used as a PPC fuel. The objective of this research was initially to investigate the required operating conditions for PPC with ethanol. Additionally, a sensitivity analysis was performed to understand how the required parameters for ethanol PPC such as lambda, EGR rate, injection pressure and inlet temperature influence the combustion in terms of controllability, stability, emissions (i.e.
Technical Paper

Experimental Assessment of Reynolds-Averaged Dissipation Modeling in Engine Flows

2007-09-16
2007-24-0046
The influence of the constant C3, which multiplies the mean flow divergence term in the model equation for the turbulent kinetic energy dissipation, is examined in a motored diesel engine for three different swirl ratios and three different spatial locations. Predicted temporal histories of turbulence energy and its dissipation are compared with experimentally-derived estimates. A “best-fit” value of C3 = 1.75, with an approximate uncertainty of ±0.3 is found to minimize the error between the model predictions and the experiments. Using this best-fit value, model length scale behavior corresponds well with that of measured velocity-correlation integral scales during compression. During expansion, the model scale grows too rapidly. Restriction of the model assessment to the expansion stroke suggests that C3 = 0.9 is more appropriate during this period.
Technical Paper

The Effect of Swirl on Spark Assisted Compression Ignition (SACI)

2007-07-23
2007-01-1856
Auto ignition with SI compression ratio can be achieved by retaining hot residuals, replacing some of the fresh charge. In this experimental work it is achieved by running with a negative valve overlap (NVO) trapping hot residuals. The experimental engine is equipped with a pneumatic valve train making it possible to change valve lift, phasing and duration, as well as running with valve deactivation. This makes it possible to start in SI mode, and then by increasing the NVO, thus raising the initial charge temperature it is possible to investigate the intermediate domain between SI and HCCI. The engine is then running in spark assisted HCCI mode, or spark assisted compression ignition (SACI) mode that is an acronym that describes the combustion on the borderline between SI and HCCI. In this study the effect of changing the in-cylinder flow pattern by increased swirl is studied. This is achieved by deactivating one of the two intake valves.
Technical Paper

Study on Combustion Chamber Geometry Effects in an HCCI Engine Using High-Speed Cycle-Resolved Chemiluminescence Imaging

2007-04-16
2007-01-0217
The aim of this study is to see how geometry generated turbulence affects the Rate of Heat Release (ROHR) in an HCCI engine. HCCI combustion is limited in load due to high peak pressures and too fast combustion. If the speed of combustion can be decreased the load range can be extended. Therefore two different combustion chamber geometries were investigated, one with a disc shape and one with a square bowl in piston. The later one provokes squish-generated gas flow into the bowl causing turbulence. The disc shaped combustion chamber was used as a reference case. Combustion duration and ROHR were studied using heat release analysis. A Scania D12 Diesel engine, converted to port injected HCCI with ethanol was used for the experiments. An engine speed of 1200 rpm was applied throughout the tests. The effect of air/fuel ratio and combustion phasing was also studied.
Technical Paper

An Evaluation of Common Rail, Hydraulically Intensified Diesel Fuel Injection System Concepts and Rate Shapes

1998-08-11
981930
Hydraulically intensified medium pressure common rail (MPCR) electronic fuel injection systems are an attractive concept for heavy-duty diesel engine applications. They offer excellent packaging flexibility and thorough engine management system integration. Two different concepts were evaluated in this study. They are different in how the pressure generation and injection events are related. One used a direct principle, where the high-pressure generation and injection events occur simultaneously producing a near square injection rate profile. Another concept was based on an indirect principle, where potential energy (pressure) is first stored inside a hydraulic accumulator, and then released during injection, as a subsequent event. A falling rate shape is typically produced in this case. A unit pump, where the hydraulic intensifier is separated from the injector by a high-pressure line, and a unit injector design are considered for both concepts.
Technical Paper

Validation of a Self Tuning Gross Heat Release Algorithm

2008-06-23
2008-01-1672
The present paper shows the validation of a self tuning heat release method with no need to model heat losses, crevice losses and blow by. Using the pressure and volume traces the method estimates the polytropic exponents (before, during and after the combustion event), by the use of the emission values and amount of fuel injected per cycle the algorithm calculates the total heat release. These four inputs are subsequently used for computing the heat release trace. The result is a user independent algorithm which results in more objective comparisons among operating points and different engines. In the present paper the heat release calculated with this novel method has been compared with the one computed using the Woschni correlation for modeling the heat transfer. The comparison has been made using different fuels (PRF0, PRF80, ethanol and iso-octane) making sweeps in relative air-fuel ratio, engine speed, EGR and CA 50.
Technical Paper

Quantitative Analysis of the Relation between Flame Structure and Turbulence in HCCI Combustion by Two-Dimensional Temperature Measurement

2008-04-14
2008-01-0061
The structure of HCCI (homogeneous charge compression ignition) combustion flames was quantitatively analyzed by measuring the two-dimensional gas temperature distribution using phosphor thermometry. It was found from the relation between a turbulent Reynolds number and Karlovitz number that, when compared with the flame propagation in an S.I. engine, HCCI combustion has a wider flame structure with respect to the turbulence scale. As a result of our experimentation for the influence of low temperature reaction (LTR) using two types of fuel, it was also confirmed that different types of fuel produce different histories of flame kernel structure.
Technical Paper

Study of Diesel Engine Size-Scaling Relationships Based on Turbulence and Chemistry Scales

2008-04-14
2008-01-0955
Engine design is a time consuming process in which many costly experimental tests are usually conducted. With increasing prediction ability of engine simulation tools, engine design aided by CFD software is being given more attention by both industry and academia. It is also of much interest to be able to use design information gained from an existing engine design of one size in the design of engines of other sizes to reduce design time and costs. Therefore it is important to study size-scaling relationships for engines over wide range of operating conditions. This paper presents CFD studies conducted for two production diesel engines - a light-duty GM-Fiat engine (0.5L displacement) and a heavy-duty Caterpillar engine (2.5L displacement). Previously developed scaling arguments, including an equal spray penetration scaling model and an extended, equal flame lift-off length scaling model were employed to explore the parametric scaling connections between the two engines.
Technical Paper

A Novel Model for Computing the Trapping Efficiency and Residual Gas Fraction Validated with an Innovative Technique for Measuring the Trapping Efficiency

2008-09-09
2008-32-0003
The paper describes a novel method for calculating the residual gas fraction and the trapping efficiency in a 2 stroke engine. Assuming one dimensional compressible flow through the inlet and exhaust ports, the method estimates the instantaneous mass flowing in and out from the combustion chamber; later the residual gas fraction and trapping efficiency are estimated combining together the perfect displacement and perfect mixing scavenging models. It is assumed that when the intake port opens, the fresh mixture is pushing out the burned charge without any mixing and after a multiple of the time needed for the largest eddy to perform one rotation, the two gasses are instantly mixed up together and expelled. The result is a very simple algorithm that does not require much computational time and is able to estimate with high level of precision the trapping efficiency and the residual gas fraction in 2 stroke engines.
Technical Paper

Engine Development Using Multi-dimensional CFD and Computer Optimization

2010-04-12
2010-01-0360
The present work proposes a methodology for diesel engine development using multi-dimensional CFD and computer optimization. A multi-objective genetic algorithm coupled with the KIVA3V Release 2 code was used to optimize a high speed direct injection (HSDI) diesel engine for passenger car applications. The simulations were conducted using high-throughput computing with the CONDOR system. An automated grid generator was used for efficient mesh generation with 11 variable piston bowl geometry parameters. The first step in the procedure was to search for an optimal nozzle and piston bowl design. In this case, spray targeting, swirl ratio, and piston bowl shape were optimized separately for two full-load cases using simpler efficient combustion models (the characteristic time scale model and the shell ignition model). The optimal designs from the two optimizations were then validated using a combustion model with detailed chemistry (KIVA-CHEMKIN model and ERC n-heptane mechanism).
Technical Paper

Efficient Simulation of Diesel Engine Combustion Using Realistic Chemical Kinetics in CFD

2010-04-12
2010-01-0178
Detailed knowledge of hydrocarbon fuel combustion chemistry has grown tremendously in recent years. However, the gap between detailed chemistry and computational fluid dynamics (CFD) remains, because of the high cost of solving detailed chemistry in a large number of computational cells. This paper presents the results of applying a suite of techniques aimed at closing this gap. The techniques include use of a surrogate blend optimizer and a guided mechanism reduction methodology, as well as advanced methods for efficiently and accurately coupling the pre-reduced kinetic models with the multidimensional transport equations. The advanced methods include dynamic adaptive chemistry (DAC) and dynamic cell clustering (DCC) algorithms.
Technical Paper

Optimization of Injection Rate Shape Using Active Control of Fuel Injection

2004-03-08
2004-01-0530
The effect of injection rate shape on spray evolution and emission characteristics is investigated and a methodology for active control of fuel injection is proposed. Extensive validation of advanced vaporization and primary jet breakup models was performed with experimental data before studying the effects of systematic changes of injection rate shape. Excellent agreement with the experiments was obtained for liquid and vapor penetration lengths, over a broad range of gas densities and temperatures. Also the predicted flame lift-off lengths of reacting diesel fuel sprays were in good agreement with the experiments. After the validation of the models, well-defined rate shapes were used to study the effect of injection rate shape on liquid and vapor penetration, flame lift-off lengths and emission characteristics.
Technical Paper

Comparison Between In-Cylinder PIV Measurements, CFD Simulations and Steady-Flow Impulse Torque Swirl Meter Measurements

2003-10-27
2003-01-3147
In-cylinder flow measurements, conventional swirl measurements and CFD-simulations have been performed and then compared. The engine studied is a single cylinder version of a Scania D12 that represents a modern heavy-duty truck size engine. Bowditch type optical access and flat piston is used. The cylinder head was also measured in a steady-flow impulse torque swirl meter. From the two-dimensional flow-field, which was measured in the interval from -200° ATDC to 65° ATDC at two different positions from the cylinder head, calculations of the vorticity, turbulence and swirl were made. A maximum in swirl occurs at about 50° before TDC while the maximum vorticity and turbulence occurs somewhat later during the compression stroke. The swirl centre is also seen moving around and it does not coincide with the geometrical centre of the cylinder. The simulated flow-field shows similar behaviour as that seen in the measurements.
Technical Paper

The Influence of Swirl Ratio on Turbulent Flow Structure in a Motored HSDI Diesel Engine - A Combined Experimental and Numerical Study

2004-03-08
2004-01-1678
Simultaneous two-component measurements of gas velocity and multi-dimensional numerical simulation are employed to characterize the evolution of the in-cylinder turbulent flow structure in a re-entrant bowl-in-piston engine under motored operation. The evolution of the mean flow field, turbulence energy, turbulent length scales, and the various terms contributing to the production of the turbulence energy are correlated and compared, with the objectives of clarifying the physical mechanisms and flow structures that dominate the turbulence production and of identifying the source of discrepancies between the measured and simulated turbulence fields. Additionally, the applicability of the linear turbulent stress modeling hypothesis employed in the k-ε model is assessed using the experimental mean flow gradients, turbulence energy, and length scales.
X