Refine Your Search

Topic

Search Results

Technical Paper

The Effect of Aromatics, MTBE, Olefins and T90 on Mass Exhaust Emissions from Current and Older Vehicles - The Auto/Oil Air Quality Improvement Research Program

1991-10-01
912322
Exhaust emissions were measured as a function of gasoline composition in two fleets of vehicles - 20 1989 vehicles and 14 1983-1985 vehicles. Eighteen different gasolines were tested which varied in aromatic, olefin, and MTBE content and in the 90 percent distillation temperature (T90). Subject to the cautions and qualifications described in the body of this paper, mass exhaust emissions in both fleets of vehicles were affected by changes in fuel composition. Responses to changes in MTBE and olefins were similar in both fleets: adding MTBE reduced emissions of HC and CO, and reducing olefins lowered emissions of NOx while raising emissions of HC. In the current fleet, reducing aromatics lowered HC and CO, while in the older fleet, reducing aromatics raised HC and lowered NOx. In the current fleet, lowering T90 reduced HC over 20%, while raising NOx slightly. In the older fleet, lowering T90 reduced HC by only 6%.
Technical Paper

Toxic Air Pollutant Vehicle Exhaust Emissions with Reformulated Gasolines

1991-10-01
912324
This paper presents results derived from Phase I of the Auto/Oil Air Quality Improvement Research Program. The Clean Air Act-defined mobile source toxic air pollutants benzene, 1,3-butadiene, formaldehyde and acetaldehyde have been measured in exhaust from twenty current model vehicles and fourteen older model vehicles during testing with 18 gasolines of varying composition. The gasoline fuel compositional variables evaluated included aromatic content, methyl tertiary-butyl ether (MTBE) content, olefin content, and the 90% distillation temperature (T90). The four fuel parameters were varied at target values of 45 and 20 vol % total aromatics, 0 and 15 vol % MTBE, 20 and 5 vol % total olefins and 360 and 280 °F 90% distillation temperature. An industry average fuel and an emissions certification test fuel were tested as reference fuels. In the current fleet, benzene levels were lowered when either fuel aromatics or T90 were reduced.
Technical Paper

Effects of Gasoline Composition and Properties on Vehicle Emissions: A Review of Prior Studies - Auto/Oil Air Quality Improvement Research Program

1991-10-01
912321
Prior studies of the effect of gasoline composition and physical properties on automotive exhaust and evaporative emissions have been reviewed. The prior work shows that the parameters selected for investigation in the Auto/Oil Air Quality Improvement Research Program (AQIRP) - gasoline aromatics content, addition of oxygenated compounds, olefins content, 90% distillation temperature, Reid vapor pressure, and sulfur content - can affect emissions. Effects have been observed on the mass of hydrocarbon, CO, and NOx emissions; on the reactivity of emissions toward ozone formation; and on the emissions of designated toxic air pollutants. The individual effects of some of the AQIRP parameters have been studied extensively in modern vehicles, but the most comprehensive studies of gasoline composition were conducted in early 1970 vehicles, and comparing the various studies shows that fuel effects can vary among vehicles with different control technology.
Technical Paper

Effects of Gasoline Sulfur Level on Mass Exhaust Emissions - Auto/Oil Air Quality Improvement Research Program

1991-10-01
912323
In this portion of the Auto/Oil Air Quality Improvement Research Program, ten 1989 model vehicles were tested using two fuels with different sulfur levels. These tests were run to determine instantaneous effects on exhaust emissions, not long-term durability effects. The high- and low-sulfur fuels contained 466 ppm and 49 ppm sulfur, respectively. Mass exhaust emissions of the fleet decreased as fuel sulfur level was reduced. Overall, HC, CO, and NOx were reduced by 16, 13, and 9 percent, respectively, when fuel sulfur level decreased. This effect appeared to be immediately reversible. Engine-out mass emissions were unaffected by changes in the fuel sulfur content, therefore, tailpipe emissions reductions were attributed to increased catalyst activity as the sulfur level was reduced.
Journal Article

Extending the Boundaries of Diesel Particulate Filter Maintenance With Ultra-Low Ash - Zero-Phosphorus Oil

2012-09-10
2012-01-1709
By 2014, all new on- and off-highway diesel engines in North America, Europe and Japan will employ diesel particulate filters (DPF) in the exhaust in order to meet particulate emission standards. If the pressure across the DPF increases due to incombustibles remaining after filter regeneration, the exhaust backpressure will increase, and this in turn reduces fuel economy and engine power, and increases emissions. Due to engine oil consumption, over 90% of the incombustibles in the DPF are derived from inorganic lubricant additives. These components are derived from calcium and magnesium detergents, zinc dithiophosphates (ZnDTP) and metal-containing oxidation inhibitors. They do not regenerate as they are non-volatile metals and salts. Consequently, the DPF has to be removed from the vehicle for cleaning. Ashless oil could eliminate the need for cleaning.
Technical Paper

RVP Reduction for Control of Wintertime CO

1998-05-04
981373
A vehicle emissions test program was conducted to evaluate the impact of gasoline RVP reduction on CO emissions under conditions that are typical of CO exceedance days in Las Vegas and Los Angeles. Test results showed that CO emissions were reduced in the Las Vegas fleet when RVP was changed from 12 to 9 psi. In the Los Angeles fleet, the results were less consistent, perhaps due to the poorer integrity of evaporative emissions control systems on these vehicles. This suggests that an optimum emissions control strategy might include both RVP reduction and an effective vehicle inspection and maintenance (I&M) program.
Technical Paper

Effect of Fuel Sulfur on Emissions in California Low Emission Vehicles

1998-10-19
982726
The Coordinating Research Council conducted a program to measure the effect of fuel sulfur on emissions from California Low Emission Vehicles (LEVs). Twelve vehicles, two each from six production LEV models, were tested using low mileage as-received catalysts and catalysts aged to 100k by each vehicle manufacturer using “rapid-aging” procedures. There were seven test fuels: five conventional fuels with sulfur ranging from 30 to 630 ppm, and two California reformulated gasoline (RFG) with sulfur of 30 and 150 ppm. Reducing fuel sulfur produced statistically significant reductions in LEV fleet emissions of NMHC, NOx and CO. Comparing conventional fuel and California RFG at the same sulfur level: California RFG had lower NMHC and NOx emissions and higher CO emissions, but only some NMHC and NOx differences and none of the CO differences between conventional and California RFG were statistically significant.
Technical Paper

Development of a Desulfurization Strategy for a NOx Adsorber Catalyst System

2001-03-05
2001-01-0510
The aggressive reduction of future diesel engine NOx emission limits forces the heavy- and light-duty diesel engine manufacturers to develop means to comply with stringent legislation. As a result, different exhaust emission control technologies applicable to NOx have been the subject of many investigations. One of these systems is the NOx adsorber catalyst, which has shown high NOx conversion rates during previous investigations with acceptable fuel consumption penalties. In addition, the NOx adsorber catalyst does not require a secondary on-board reductant. However, the NOx adsorber catalyst also represents the most sulfur sensitive emissions control device currently under investigation for advanced NOx control. To remove the sulfur introduced into the system through the diesel fuel and stored on the catalyst sites during operation, specific regeneration strategies and boundary conditions were investigated and developed.
Technical Paper

Speciation and Calculated Reactivity of Automotive Exhaust Emissions and Their Relation to Fuel Properties - Auto/Oil Air Quality Improvement Research Program

1992-02-01
920325
Speciated exhaust emission data from Phase I of the Auto/Oil Air Quality Improvement Research Program are presented and analyzed. Eighteen fuels were tested which varied in four fuel parameters: aromatics, MTBE content, olefins, and T90. These fuels were tested in two fleets of vehicles. One consisted of twenty 1989 vehicles and the other consisted of fourteen 1983-1985 vehicles. The 1990 version of Carter reactivity factors were used to calculate reactivities for each of these tests. Two types of reactivities were calculated. The first was Specific Reactivity and has units of grams ozone per gram NMOG (non-methane organic gas). The second was Ozone Forming Potential and has units of grams ozone per mile. Both types of reactivities were calculated using Carter's MIR (Maximum Incremental Reactivity) as well as MOR (Maximum Ozone Reactivity) factors.
Technical Paper

Running Loss Test Procedure Development

1992-02-01
920322
A running loss test procedure has been developed which integrates a point-source collection method to measure fuel evaporative running loss from vehicles during their operation on the chassis dynamometer. The point-source method is part of a complete running loss test procedure which employs the combination of site-specific collection devices on the vehicle, and a sampling pump with sampling lines. Fugitive fuel vapor is drawn into these collectors which have been matched to characteristics of the vehicle and the test cell. The composite vapor sample is routed to a collection bag through an adaptation of the ordinary constant volume dilution system typically used for vehicle exhaust gas sampling. Analysis of the contents of such bags provides an accurate measure of the mass and species of running loss collected during each of three LA-4* driving cycles. Other running loss sampling methods were considered by the Auto-Oil Air Quality Improvement Research Program (AQIRP or Program).
Technical Paper

Statistical Design and Analysis Methods for the Auto/Oil Air Quality Research Program

1992-02-01
920319
The several principal experimental matrices of the Auto/Oil Air Quality Improvement Research Program (AQIRP) were statistically designed as regards vehicle fleet size and fuel property combinations. The test results were analyzed using powerful standard statistical methods to extract the maximum amount of information from the data. The analysis included the use of appropriate data transformations and also graphical methods to display the results. The test fleets were sized to control the risk of failing to detect an important effect while providing assurance that unimportant, small effects have little chance to be found highly significant. To do this required estimation of the pertinent error term from other test programs which did not completely correspond to the type of testing contemplated in the AQIRP. These estimates turned out to be quite good. The compositional fuel matrices were blocked into two fuel groups.
Technical Paper

The Effects of Methanol/Gasoline Blends on Automobile Emissions

1992-02-01
920327
This report presents the Auto/Oil AQIRP results of a methanol fueled vehicle emission study. Nineteen early prototype flexible/variable fueled vehicles (FFV/VFV) were emission tested with industry average gasoline (M0), an 85% methanol-gasoline blend (M85), and a splash-blend of M85 with M0 (gasoline) giving 10% methanol (M10). Vehicle emissions were analyzed for the FTP exhaust emissions, SHED diurnal and hot soak evaporative emissions, and running loss evaporative emissions. Measurements were made for HC, CO and NOx emissions and up to 151 organic emission species, including air toxic components. M0 and M10 emissions were very similar except for elevated M10 evaporative emissions resulting from the high M10 fuel vapor pressure. M85 showed lower exhaust emissions than M0 for NMHC (non-methane hydrocarbon), OMHCE (organic material hydrocarbon equivalent), CO and most species. M85 had higher exhaust emissions for NMOG (non-methane organic gases), NOx, methanol and formaldehyde.
Technical Paper

Effects of Oxygenated Fuels and RVP on Automotive Emissions - Auto/Oil Air Quality Improvement Program

1992-02-01
920326
Exhaust and evaporative emissions were measured as a function of gasoline composition and fuel vapor pressure in a fleet of 20 1989 vehicles. Eleven fuels were evaluated; four hydrocarbon only, four splash blended ethanol fuels (10 vol %), two methyl tertiary-butyl ether (MTBE) blends (15 vol %) and one ethyl tertiary-butyl ether (ETBE) blend (17 vol %). Reid vapor pressures were between 7.8 and 9.6 psi. Exhaust emission results indicated that a reduction in fuel Reid vapor pressure of one psi reduced exhaust HC and CO. Adding oxygenates reduced exhaust HC and CO but increased NOx. Results of evaporative emissions tests on nineteen vehicles indicated a reduction in diurnal emissions with reduced Reid vapor pressure in the non-oxygenated and ethanol blended fuels. However, no reduction in diurnal emissions with the MTBE fuel due to Reid vapor pressure reduction was observed. Reducing Reid vapor pressure had no statistically significant effect on hot soak emissions.
Technical Paper

Effects of Gasoline Composition on Vehicle Engine-Out and Tailpipe Hydrocarbon Emissions - The Auto/Oil Air Quality Improvement Research Program

1992-02-01
920329
In this pilot study conducted by the Auto/Oil Air Quality Improvement Research Program, engine-out and tailpipe speciated hydrocarbon emissions were obtained for three vehicles operated over the Federal Test Procedure on two different fuels, both of which were speciated. The fates of the fuel species were traced across the engine and across the catalyst, and relationships were developed between engine-out and tailpipe hydrocarbon emissions and fuel composition. These relationships allowed separating the fuel's contribution to engine-out and tailpipe hydrocarbon emissions into two parts, unreacted fuel and partial oxidation products. Specific ozone reactivities and toxic air pollutants were analyzed for both engine-out and tailpipe emissions. Vehicle-to-vehicle, fuel-to-fuel, and bag-to-bag differences have been highlighted.
Technical Paper

Locomotive Emissions Measurements for Various Blends of Biodiesel Fuel

2013-09-08
2013-24-0106
The objective of this project was to assess the effects of various blends of biodiesel on locomotive engine exhaust emissions. Systematic, credible, and carefully designed and executed locomotive fuel effect studies produce statistically significant conclusions are very scarce, and only cover a very limited number of locomotive models. Most locomotive biodiesel work has been limited to cursory demonstration programs. Of primary concern to railroads and regulators is understanding any exhaust emission associated with biodiesel use, especially NOX emissions. In this study, emissions tests were conducted on two locomotive models, a Tier 2 EMD SD70ACe and a Tier 1+ GE Dash9-44CW with two baseline fuels, conventional EPA ASTM No. 2-D S15 (commonly referred to as ultra-low sulfur diesel - ULSD) certification diesel fuel, and commercially available California Air Resource Board (CARB) ULSD fuel.
Technical Paper

Fuel Effects in Auto/Oil High Emitting Vehicles

1993-03-01
930137
Fuel effects on exhaust emissions of a sample of seven high emitting vehicles were studied. The vehicles had various mechanical problems and all ran fuel rich. The degree of enrichment varied between tests, and strongly affected mass emissions. Variable enrichment can cause incorrect apparent fuel effects to be calculated if not accounted for in data analysis. After variable enrichment was compensated for, the percentage effects of fuel oxygen, RVP, and olefins were largely in agreement with prior findings for normally emitting vehicles. Reducing fuel sulfur and T90 may have less benefit on hydrocarbon emissions in these high emitters than in normal emitters, and reducing sulfur may have less benefit on CO emissions. Reducing aromatics may be somewhat more helpful in reducing hydrocarbon and CO emissions in the high emitters.
Technical Paper

Effects of Gasoline Sulfur Level on Exhaust Mass and Speciated Emissions: The Question of Linearity - Auto/Oil Air Quality Improvement Program

1993-10-01
932727
Effects of gasoline sulfur content on emissions were measured in a fleet of ten 1989 model year vehicles. Two ranges of sulfur content were examined. In a set of five fuels, reducing sulfur from 450 to 50 ppm, reduced fleet average tailpipe emissions of HC, NMHC and CO each by about 18%, and reduced NOx 8%. The largest effect on HC and CO emissions was observed in FTP Bag 2. This and the absence of any significant effect on engine emissions indicate that sulfur affected the performance of the catalytic converters. The response of HC and NMHC to fuel sulfur content was non-linear and increased as sulfur level was reduced. In the second set of three fuels, reducing sulfur from 50 to 10 ppm reduced HC and NMHC by 6% and CO by 10%, but had no significant effect on NOx. The effects on HC, NMHC and NOx were not significantly different from predictions based on the prior fuel set. The reduction in CO was larger than predicted.
Technical Paper

Effects of Fuel Properties on Mass Exhaust Emissions During Various Modes of Vehicle Operation

1993-10-01
932726
The analysis of data from the Auto/Oil Air Quality Improvement Research Program (AQIRP) study of the effect of aromatics, MTBE, olefins, and T90 on mass exhaust emissions from current (1989) vehicles was extended to include individual vehicles during individual operating modes. The results of the modal data analysis agree with and complement results which have been reported previously by AQIRP. Beyond this, attention is focused on three fuel compositional changes where the effect on emissions shows a reversal in sign depending on the vehicle operating mode chosen.
Technical Paper

How Heavy Hydrocarbons in the Fuel Affect Exhaust Mass Emissions: Correlation of Fuel, Engine-Out, and Tailpipe Speciation — The Auto/Oil Air Quality Improvement Research Program

1993-10-01
932725
Species analyses have been performed on engine-out and tailpipe hydrocarbon mass emissions to help understand why fuels with increasing amounts of heavy hydrocarbon constituents produce significantly higher tailpipe hydrocarbon emissions. Mass and speciated hydrocarbon emissions were acquired for a fleet of ten 1989 model year vehicles operating on twenty-six fuels of differing heavy hydrocarbon composition. These fuels formed two statistically designed matrices: one examining the effects of medium, heavy, and tail reformate and medium and heavy catalytically cracked components; and the other examining the effects of heavy paraffinic versus heavy aromatic components and the effects of the 50% distillation temperature. In this paper the fates of fuel species were traced across the engine and across the catalyst, and correlations were developed between engine-out and tailpipe hydrocarbon species emissions and fuel composition.
Technical Paper

How Heavy Hydrocarbons in the Fuel Affect Exhaust Mass Emissions: Modal Analysis — The Auto/Oil Air Quality Improvement Research Program

1993-10-01
932724
Modal analyses have been performed on engine-out and tailpipe hydrocarbon and carbon monoxide mass emissions to help understand why fuels with increasing amounts of heavy hydrocarbon constituents produce significantly higher tailpipe hydrocarbon emissions, yet do not produce significantly higher tailpipe carbon monoxide emissions. Mass emissions were acquired for a fleet of ten 1989 model year vehicles operating on twenty six fuels of differing heavy hydrocarbon composition. These fuels formed two statistically designed matrices: one examining the effects of medium, heavy, and tail reformate and medium and heavy catalytically cracked components; and the other examining the effects of heavy paraffinic versus heavy aromatic components and the effects of the 50% distillation temperature.
X