Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

The Effect of Cetane Improvers and Biodiesel on Diesel Particulate Matter Size

2011-04-12
2011-01-0330
Heavy-duty diesel engines (HDDE), because of their widespread use and reputation of expelling excessive soot, have frequently been held responsible for excessive amounts of overall environmental particulate matter (PM). PM is a considerable contributor to air pollution, and a subject of primary concern to health and regulatory agencies worldwide. The U.S. Environmental Protection Agency (EPA) has provided PM emissions regulations and standards of measurement techniques since the 1980's. PM standards set forth by the EPA for HDDEs are based only on total mass, instead of size and/or concentration. The European Union adopted a particle number emission limit, and it may influence the U.S. EPA to adopt particle number or size limits in the future. The purpose of this research was to study the effects biodiesel blended fuel and cetane improvers have on particle size and number.
Journal Article

Diesel Exhaust Aftertreatment with Scrubber Process: NOx Destruction

2012-05-15
2011-01-2440
Oxides of nitrogen (NOx) emissions, produced by engines that burn fuels with atmospheric air, are known to cause negative health and environmental effects. Increasingly stringent emissions regulations for marine engines have caused newer engines to be developed with inherent NOx reduction technologies. Older marine engines typically have a useful life of over 20 years and produce a disproportionate amount of NOx emissions when compared with their newer counterparts. Wet scrubbing as an aftertreatment method for emissions reduction was applied to ocean-going marine vessels for the reduction of sulfur oxides (SOx) and particulate matter (PM) emissions. The gaseous absorption process was explored in the laboratory as an option for reducing NOx emissions from older diesel engines of harbor craft operating in ports of Houston and Galveston. A scrubber system was designed, constructed, and evaluated to provide the basis for a real-world design.
Technical Paper

Neural Network Modeling of Emissions from Medium-Duty Vehicles Operating on Fisher-Tropsch Synthetic Fuel

2007-04-16
2007-01-1080
West Virginia University has conducted research to characterize the emissions from medium-duty vehicles operating on Fischer-Tropsch synthetic gas-to-liquid compression ignition fuel. The West Virginia University Transportable Heavy Vehicle Emissions Testing Laboratory was used to collect data for gaseous emissions (carbon dioxide, carbon monoxide, oxides of nitrogen, and total hydrocarbon) while the vehicles were exercised through a representative driving schedule, the New York City Bus Cycle (NYCB). Artificial neural networks were used to model emissions to enhance the capabilities of computer-based vehicle operation simulators. This modeling process is presented in this paper. Vehicle velocity, acceleration, torque at rear axel, and exhaust temperature were used as inputs to the neural networks. For each of the four gaseous emissions considered, one set of training data and one set of validating data were used, both based on the New York City Bus Cycle.
Technical Paper

Heat Release and Emission Characteristics of B20 Biodiesel Fuels During Steady State and Transient Operation

2008-04-14
2008-01-1377
Biodiesel fuels benefit both from being a renewable energy source and from decreasing in carbon monoxide (CO), total hydrocarbons (THC), and particulate matter (PM) emissions relative to petroleum diesel. The oxides of nitrogen (NOx) emissions from biodiesel blended fuels reported in the literature vary relative to baseline diesel NOx, with no NOx change or a NOx decrease found by some to an increase in NOx found by others. To explore differences in NOx, two Cummins ISM engines (1999 and 2004) were operated on 20% biodiesel blends during the heavy-duty transient FTP cycle and the steady state Supplemental Emissions Test. For the 2004 Cummins ISM engine, in-cylinder pressure data were collected during the steady state and transient tests. Three types of biodiesel fuels were used in the blends: soy, tallow (animal fat), and cottonseed. The FTP integrated emissions of the B20 blends produced a 20-35% reduction in PM and no change or up to a 4.3% increase in NOx over the neat diesel.
Technical Paper

Emissions from Trucks using Fischer-Tropsch Diesel Fuel

1998-10-19
982526
The Fischer-Tropsch (F-T) catalytic conversion process can be used to synthesize diesel fuels from a variety of feedstocks, including coal, natural gas and biomass. Synthetic diesel fuels can have very low sulfur and aromatic content, and excellent autoignition characteristics. Moreover, Fischer-Tropsch diesel fuels may also be economically competitive with California diesel fuel if produced in large volumes. An overview of Fischer-Tropsch diesel fuel production and engine emissions testing is presented. Previous engine laboratory tests indicate that F-T diesel is a promising alternative fuel because it can be used in unmodified diesel engines, and substantial exhaust emissions reductions can be realized. The authors have performed preliminary tests to assess the real-world performance of F-T diesel fuels in heavy-duty trucks. Seven White-GMC Class 8 trucks equipped with Caterpillar 10.3 liter engines were tested using F-T diesel fuel.
Technical Paper

Emission Reductions and Operational Experiences With Heavy Duty Diesel Fleet Vehicles Retrofitted with Continuously Regenerated Diesel Particulate Filters in Southern California

2001-03-05
2001-01-0512
Particulate emission control from diesel engines is one of the major concerns in the urban areas in California. Recently, regulations have been proposed for stringent PM emission requirements from both existing and new diesel engines. As a result, particulate emission control from urban diesel engines using advanced particulate filter technology is being evaluated at several locations in California. Although ceramic based particle filters are well known for high PM reductions, the lack of effective and durable regeneration system has limited their applications. The continuously regenerated diesel particulate filter (CRDPF) technology discussed in this presentation, solves this problem by catalytically oxidizing NO present in the diesel exhaust to NO2 which is utilized to continuously combust the engine soot under the typical diesel engine operating condition.
Technical Paper

Measuring Diesel Emissions with a Split Exhaust Configuration

2001-05-07
2001-01-1949
West Virginia University evaluated diesel oxidation catalysts (DOC) and lean-NOX catalysts as part of Diesel Emissions Control-Sulfur Effects (DECSE) project. In order to perform thermal aging of the DOC and lean-NOX catalysts simultaneously and economically, each catalyst was sized to accommodate half of the engine exhaust flow. Simultaneous catalyst aging was then achieved by splitting the engine exhaust into two streams such that approximately half of the total exhaust flowed through the DOC and half through the lean-NOX catalyst. This necessitated splitting the engine exhaust into two streams during emissions measurements. Throttling valves installed in each branch of the split exhaust were adjusted so that approximately half the engine exhaust passed though the active catalyst under evaluation and into a full flow dilution tunnel for emissions measurement.
Technical Paper

Operating Envelopes of Hybrid Bus Engines

2001-09-24
2001-01-3537
Recent chassis testing of hybrid buses demonstrated the potential of hybrid technology to reduce emissions and raise fuel economy relative to conventional buses. However, hybrid buses represent a certification quandary because the engines must be certified using the accepted Federal Test Procedure (FTP), without regard for benefits that may arise from less transient engine operation. Actual engine operating data from series configuration hybrid buses were analyzed to determine the envelopes of torque and speeds covered by the engine. Transient engine operation was also considered in terms of rates of change of torque, power and speed. These measures did not compare closely with similar measures computed from the FTP because the series hybrid engines explored a more structured zone of operation than the FTP implied and because the FTP represented more transient operation.
Technical Paper

Measurement of Brake-specific NOX Emissions using Zirconia Sensors for In-use, On-board Heavy-duty Vehicle Applications

2002-05-06
2002-01-1755
Emissions tests for heavy -duty diesel-fueled engines and vehicles are normally performed using engine dynamometers and chassis dynamometers, respectively, with laboratory grade gaseous concentration measurement analyzers and supporting test equipment. However, a considerable effort has been recently expended on developing in-use, on-board tools to measure brake-specific emissions from heavy -duty vehicles with the highest degree of accuracy and precision. This alternative testing methodology would supplement the emissions data that is collected from engine and chassis dynamometer tests. The on-board emissions testing methodology entails actively recording emissions and vehicle operating parameters (engine speed and load, vehicle speed etc.) from vehicles while they are operating on the road. This paper focuses on in-use measurements of NOX with zirconium oxide sensors and other portable NOX detectors.
Technical Paper

Emissions Modeling of Heavy-Duty Conventional and Hybrid Electric Vehicles

2001-09-24
2001-01-3675
Today's computer-based vehicle operation simulators use engine speed, engine torque, and lookup tables to predict emissions during a driving simulation [1]. This approach is used primarily for light and medium-duty vehicles, with large discrepancies inherently due to the lack of transient engine emissions data and inaccurate emissions prediction methods [2]. West Virginia University (WVU) has developed an artificial neural network (ANN) based emissions model for incorporation into the ADvanced VehIcle SimulatOR (ADVISOR) software package developed by the National Renewable Energy Laboratory (NREL). Transient engine dynamometer tests were conducted to obtain training data for the ANN. The ANN was trained to predict carbon dioxide (CO2) and oxides of nitrogen (NOx) emissions based on engine speed, torque, and their representative first and second derivatives over various time ranges.
Technical Paper

Measurement of In-Use, On-Board Emissions from Heavy-Duty Diesel Vehicles:Mobile Emissions Measurement System

2001-09-24
2001-01-3643
Emissions tests for heavy-duty diesel-fueled vehicles are normally performed using an engine dynamometer or a chassis dynamometer. Both of these methods generally entail the use of laboratory-grade emissions measurement instrumentation, a CVS system, an environment control system, a dynamometer, and associated data acquisition and control systems. The results obtained from such tests provide a means by which engines may be compared to the emissions standards, but may not be truly indicative of an engine's in-vehicle performance while operating on the road. An alternative to such a testing methodology would be to actively record the emissions from a vehicle while it was operating on-road. A considerable amount of discussion has been focused on the development of on-road emissions measurement systems (OREMS) that would provide for such in-use emissions data collection.
Technical Paper

Research Approach for Aging and Evaluating Diesel Lean-NOx Catalysts

2001-09-24
2001-01-3620
The goal of the Diesel Emissions Control-Sulfur Effects (DECSE) program was to determine the impact of diesel fuel sulfur levels on emissions control devices that could lower emissions of oxides of nitrogen (NOX) and particulate matter (PM) from on-highway trucks and buses. West Virginia University (WVU) performed evaluations of lean-NOx catalysts to determine the effects of fuel sulfur content on emissions reduction efficiency and catalyst durability in the first 250 hours of operation. A Cummins ISM370 engine (10.8 liter, 370 horsepower), typical of heavy -duty truck applications, was utilized to evaluate high-temperature lean-NOX catalyst while a Navistar T444E (7.3 liter, 210 horsepower), typical of medium-duty applications, was used to evaluate low-temperature catalyst. Catalysts were evaluated periodically during the first 250 hours of exposure to exhaust from engines operated on 3ppm, 30ppm, 150ppm and 350ppm sulfur content diesel fuel.
Technical Paper

Year-Long Evaluation of Trucks and Buses Equipped with Passive Diesel Particulate Filters

2002-03-04
2002-01-0433
A program has been completed to evaluate ultra-low sulfur diesel fuels and passive diesel particulate filters (DPFs) in truck and bus fleets operating in southern California. The fuels, ECD and ECD-1, are produced by ARCO (a BP Company) and have less than 15 ppm sulfur content. Vehicles were retrofitted with two types of catalyzed DPFs, and operated on ultra-low sulfur diesel fuel for over one year. Exhaust emissions, fuel economy and operating cost data were collected for the test vehicles, and compared with baseline control vehicles. Regulated emissions are presented from two rounds of tests. The first round emissions tests were conducted shortly after the vehicles were retrofitted with the DPFs. The second round emissions tests were conducted following approximately one year of operation. Several of the vehicles retrofitted with DPFs accumulated well over 100,000 miles of operation between test rounds.
Technical Paper

Emissions from Diesel-Fueled Heavy-Duty Vehicles in Southern California

2003-05-19
2003-01-1901
Few real-world data exist to describe the contribution of diesel vehicles to the emissions inventory, although it is widely acknowledged that diesel vehicles are a significant contributor to oxides of nitrogen (NOx) and particulate matter (PM) in Southern California. New data were acquired during the Gasoline/Diesel PM Split Study, designed to collect emissions data for source profiling of PM emissions from diesel- and gasoline-powered engines in the South Coast (Los Angeles) Air Basin in 2001. Regulated gases, PM and carbon dioxide (CO2) were measured from 34 diesel vehicles operating in the Southern California area. Two were transit buses, 16 were trucks over 33,000 lbs. in weight, 8 were 14,001 lbs. to 33,000 lbs. in weight and 8 were under 14,001 lbs. in weight. The vehicles were also grouped by model year for recruiting and data analysis.
Technical Paper

Development of a Vehicle Road Load Model for ECU Broadcast Power Verification in On-Road Emissions Testing

2006-10-16
2006-01-3392
The 1998 Consent Decrees between the United States Government and the settling heavy-duty diesel engine manufacturers require in-use emissions testing from post 2000 model year engines. The emissions gathered from these engines must be reported on a brake-specific mass basis. To report brake-specific mass emissions, three primary parameters must be measured. These are the concentration of each emission constituent, the exhaust mass flow rate, and the engine power output. The measurement of the concentration level and exhaust mass flow rate can be (and are generally) measured directly with instrumentation installed in the exhaust transfer tube. However, engine power cannot be measured directly for in-use emissions testing due to the direct coupling of the engine output shaft to the vehicle's transmission. Engine power can be inferred from the electronic control unit (ECU) broadcast of engine speed and engine torque.
Technical Paper

Regulated Emissions from Heavy Heavy-Duty Diesel Trucks Operating in the South Coast Air Basin

2006-10-16
2006-01-3395
Heavy duty diesel vehicle (HDDV) emissions are known to affect air quality, but few studies have quantified the real-world contribution to the inventory. The objective of this study was to provide data that may enable ambient emissions investigators to m,odel the air quality more accurately. The 25 vehicles reported in this paper are from the first phase of a program to determine representative regulated emissions from Heavy Heavy-Duty Diesel Trucks (HHDDT) operating in Southern California. Emissions data were gathered using a chassis dynamometer, full flow dilution tunnel, and research grade analyzers. The subject program employed two truck test weights and four new test modes (one was idle operation), in addition to the Urban Dynamometer Driving Schedule (UDDS), and the AC50/80 cycle. The reason for such a broad test cycle scope was to determine thoroughly how HHDDT emissions are influenced by operating cycle to improve accuracy of models.
Technical Paper

Influences of Real-World Conditions on In-Use Emission from Heavy-Duty Diesel Engines

2006-10-16
2006-01-3393
The 1998 Consent Decrees between the settling heavy-duty diesel engine manufacturers and the United States Government require the engine manufacturer to perform in-use emissions testing to evaluate their engine designs and emissions when the vehicle is placed into service. This additional requirement will oblige the manufacturer to account for real-world conditions when designing engines and engine control algorithms and include driving conditions, ambient conditions, and fuel properties in addition to the engine certification test procedures. Engine operation and ambient conditions can be designed into the engine control algorithm. However, there will most likely be no on-board determination of fuel properties or composition in the near future. Therefore, the engine manufacturer will need to account for varying fuel properties when developing the engine control algorithm for when in-use testing is performed.
Technical Paper

Continuously Varying Exhaust Outlet Diameter to Improve Efficiency and Emissions of a Small SI Natural Gas Two-Stroke Engine by Internal EGR

2018-04-03
2018-01-0985
With continuously increasing concern for the emissions from two-stroke engines including regulated hydrocarbon (HC) and oxides of nitrogen (NOx) emissions, non-road engines are implementing proven technologies from the on-road market. For example, four stroke diesel generators now include additional internal exhaust gas recirculation (EGR) via an intake/exhaust valve passage. EGR can offer benefits of reduced HC, NOx, and may even improve combustion stability and fuel efficiency. In addition, there is particular interest in use of natural gas as fuel for home power generation. This paper examines exhaust throttling applied to the Helmholtz resonator of a two-stroke, port injected, natural gas engine. The 34 cc engine was air cooled and operated at wide-open throttle (WOT) conditions at an engine speed of 5400 RPM with fueling adjusted to achieve maximum brake torque. Exhaust throttling served as a method to decrease the effective diameter of the outlet of the convergent cone.
Technical Paper

Emissions Comparisons of Twenty-Six Heavy-Duty Vehicles Operated on Conventional and Alternative Fuels

1993-11-01
932952
Gaseous and particulate emissions from heavy-duty vehicles are affected by fuel types, vehicle/engine parameters, driving characteristics, and environmental conditions. Transient chassis tests were conducted on twenty-six heavy-duty vehicles fueled with methanol, compressed natural gas (CNG), #1 diesel, and #2 diesel, using West Virginia University (WVU) Transportable Heavy-Duty Vehicle Emissions Testing Laboratory. The vehicles were operated on the central business district (CBD) testing cycle, and regulated emissions of carbon monoxide (CO), total hydrocarbon (HC), nitrogen oxides (NOx), and particulate matter (PM) were measured. Comparisons of regulated emissions results revealed that the vehicles powered on methanol and CNG produced much lower particulate emissions than the conventionally fueled vehicles.
Technical Paper

Sampling Strategies for Characterization of the Reactive Components of Heavy Duty Diesel Exhaust Emissions

1994-11-01
942262
Techniques have been developed to sample and speciate dilute heavy duty diesel exhaust to determine the specific reactivities and the ozone forming potential. While the Auto/Oil Air Quality Improvement Research Program (AQIRP) has conducted a comprehensive investigation to develop data on potential improvements in vehicle emissions and air quality from reformulated gasoline and various other alternative fuels. However, the development of sampling protocols and speciation of heavy duty diesel exhaust is still in its infancy [1, 2, 3, 4, 5 and 6]. This paper focuses on the first phase of the heavy duty diesel speciation program, that involves the development of a unique set of sampling protocols for the gas phase, semi-volatile and particulate matter from the exhaust of engines operating on different types of diesel fuel. Effects of sampling trains, sampling temperatures, semi-volatile adsorbents and driving cycles are being investigated.
X