Refine Your Search

Topic

null

Affiliation

Search Results

Journal Article

Impacts of Biodiesel Fuel Blends Oil Dilution on Light-Duty Diesel Engine Operation

2009-06-15
2009-01-1790
Increasing interest in biofuels—specifically, biodiesel as a pathway to energy diversity and security—have necessitated the need for research on the performance and utilization of these fuels and fuel blends in current and future vehicle fleets. One critical research area is related to achieving a full understanding of the impact of biodiesel fuel blends on advanced emission control systems. In addition, the use of biodiesel fuel blends can degrade diesel engine oil performance and impact the oil drain interval requirements. There is limited information related to the impact of biodiesel fuel blends on oil dilution. This paper assesses the oil dilution impacts on an engine operating in conjunction with a diesel particle filter (DPF), oxides of nitrogen (NOx) storage, a selective catalytic reduction (SCR) emission control system, and a 20% biodiesel (soy-derived) fuel blend.
Journal Article

Impact of a Diesel High Pressure Common Rail Fuel System and Onboard Vehicle Storage on B20 Biodiesel Blend Stability

2016-04-05
2016-01-0885
Adoption of high-pressure common-rail (HPCR) fuel systems, which subject diesel fuels to higher temperatures and pressures, has brought into question the veracity of ASTM International specifications for biodiesel and biodiesel blend oxidation stability, as well as the lack of any stability parameter for diesel fuel. A controlled experiment was developed to investigate the impact of a light-duty diesel HPCR fuel system on the stability of 20% biodiesel (B20) blends under conditions of intermittent use and long-term storage in a relatively hot and dry climate. B20 samples with Rancimat induction periods (IPs) near the current 6.0-hour minimum specification (6.5 hr) and roughly double the ASTM specification (13.5 hr) were prepared from a conventional diesel and a highly unsaturated biodiesel. Four 2011 model year Volkswagen Passats equipped with HPCR fuel injection systems were utilized: one on B0, two on B20-6.5 hr, and one on B20-13.5 hr.
Journal Article

Exploring the Relationship Between Octane Sensitivity and Heat-of-Vaporization

2016-04-05
2016-01-0836
The latent heat-of-vaporization (HoV) of blends of biofuel and hydrocarbon components into gasolines has recently experienced expanded interest because of the potential for increased HoV to increase fuel knock resistance in direct-injection (DI) engines. Several studies have been conducted, with some studies identifying an additional anti-knock benefit from HoV and others failing to arrive at the same conclusion. Consideration of these studies holistically shows that they can be grouped according to the level of fuel octane sensitivity variation within their fuel matrices. When comparing fuels of different octane sensitivity significant additional anti-knock benefits associated with HoV are sometimes observed. Studies that fix the octane sensitivity find that HoV does not produce additional anti-knock benefit. New studies were performed at ORNL and NREL to further investigate the relationship between HoV and octane sensitivity.
Journal Article

Review: Fuel Volatility Standards and Spark-Ignition Vehicle Driveability

2016-03-14
2016-01-9072
Spark-ignition engine fuel standards have been put in place to ensure acceptable hot and cold weather driveability (HWD and CWD). Vehicle manufacturers and fuel suppliers have developed systems that meet our driveability requirements so effectively that drivers overwhelmingly find that their vehicles reliably start up and operate smoothly and consistently throughout the year. For HWD, fuels that are too volatile perform more poorly than those that are less volatile. Vapor lock is the apparent cause of poor HWD, but there is conflicting evidence in the literature as to where in the fuel system it occurs. Most studies have found a correlation between degraded driveability and higher dry vapor pressure equivalent or lower TV/L = 20, and less consistently with a minimum T50. For CWD, fuels with inadequate volatility can cause difficulty in starting and rough operation during engine warmup.
Journal Article

Effect of B20 and Low Aromatic Diesel on Transit Bus NOx Emissions Over Driving Cycles with a Range of Kinetic Intensity

2012-09-24
2012-01-1984
The objective of this research project was to compare the emissions of oxides of nitrogen (NOx) from transit buses on as many as five different fuels and three standard transit duty cycles to establish if there is a real-world biodiesel NOx increase for transit bus duty cycles and engine calibrations. Prior studies have shown that B20 can cause a small but significant increase in NOx emissions for some engines and duty cycles. Six buses spanning engine build years 1998 to 2011 were tested on the National Renewable Energy Laboratory's Renewable Fuels and Lubricants research laboratory's heavy-duty chassis dynamometer with certification diesel, certification B20 blend, low aromatic [California Air Resources Board (CARB)] diesel, low aromatic B20 blend, and B100 fuels over the Manhattan, Orange County and UDDS test cycles.
Journal Article

Selection Criteria and Screening of Potential Biomass-Derived Streams as Fuel Blendstocks for Advanced Spark-Ignition Engines

2017-03-28
2017-01-0868
We describe a study to identify potential biofuels that enable advanced spark ignition (SI) engine efficiency strategies to be pursued more aggressively. A list of potential biomass-derived blendstocks was developed. An online database of properties and characteristics of these bioblendstocks was created and populated. Fuel properties were determined by measurement, model prediction, or literature review. Screening criteria were developed to determine if a bioblendstock met the requirements for advanced SI engines. Criteria included melting point (or cloud point) < -10°C and boiling point (or T90) <165°C. Compounds insoluble or poorly soluble in hydrocarbon were eliminated from consideration, as were those known to cause corrosion (carboxylic acids or high acid number mixtures) and those with hazard classification as known or suspected carcinogens or reproductive toxins.
Journal Article

Heat of Vaporization Measurements for Ethanol Blends Up To 50 Volume Percent in Several Hydrocarbon Blendstocks and Implications for Knock in SI Engines

2015-04-14
2015-01-0763
The objective of this work was to measure knock resistance metrics for ethanol-hydrocarbon blends with a primary focus on development of methods to measure the heat of vaporization (HOV). Blends of ethanol at 10 to 50 volume percent were prepared with three gasoline blendstocks and a natural gasoline. Performance properties and composition of the blendstocks and blends were measured, including research octane number (RON), motor octane number (MON), net heating value, density, distillation curve, and vapor pressure. RON increases upon blending ethanol but with diminishing returns above about 30 vol%. Above 30% to 40% ethanol the curves flatten and converge at a RON of about 103 to 105, even for the much lower RON NG blendstock. Octane sensitivity (S = RON - MON) also increases upon ethanol blending. Gasoline blendstocks with nearly identical S can show significantly different sensitivities when blended with ethanol.
Technical Paper

Natural Gas and Diesel Transit Bus Emissions: Review and Recent Data

1997-11-17
973203
Natural Gas engines are viewed as an alternative to diesel power in the quest to reduce heavy duty vehicle emissions in polluted urban areas. In particular, it is acknowledged that natural gas has the potential to reduce the inventory of particulate matter, and this has encouraged the use of natural gas engines in transit bus applications. Extensive data on natural gas and diesel bus emissions have been gathered using two Transportable Heavy Duty Vehicle Emissions Testing Laboratories, that employ chassis dynamometers to simulate bus inertia and road load. Most of the natural gas buses tested prior to 1997 were powered by Cummins L-10 engines, which were lean-burn and employed a mechanical mixer for fuel introduction. The Central Business District (CBD) cycle was used as the test schedule.
Technical Paper

Emissions Testing of a Hybrid Fuel Cell Bus

1998-02-23
980680
The fuel cell bus program at Georgetown University (GU) has directed the operational development and testing of three hybrid fuel cell powered buses for transit operation. These are the world's first liquid-fueled, fuel cell powered road vehicles. This paper describes the emissions testing of one of these buses on a heavy duty chassis dynamometer at West Virginia University (WVU). The tested bus was driven by a 120 kW DC motor and utilized a 50 kW phosphoric acid fuel cell (PAFC) as an energy source with a 100 kW battery for supplemental power. A methanol/water fuel mixture was converted by a steam reformer to a hydrogen rich gas mixture for use in a fuel cell stack. Emissions from the reformer, fuel cell stack and startup burner were monitored for both transient and steady-state operation.
Technical Paper

Emissions from Marine Engines with Water Contact in the Exhaust Stream

1998-02-23
980681
Recreational marine engine operation effects water quality as well as air quality. Significant quantities of hydrocarbons are discharged into the rivers, lakes, and estuaries used as recreational boating waters. In order to investigate the impact of recreational marine engine operation on water quality, a MerCruiser 3.0LX four-cylinder four-stroke inboard engine and a Mercury 650 two-cylinder two-stroke outboard engine were tested using EPA required certification procedures. Both engines were tested with exhaust gas/cooling water mixing (scrubbing) in the exhaust stream using both freshwater and saltwater. Additionally, the inboard engine was tested without exhaust scrubbing. Gaseous emissions (HC, NOX, CO, and CO2) from the engines were continuously measured using a constant volume sampling system. Both exhaust gas and cooling water samples were collected and speciated for hydrocarbon species present.
Technical Paper

Numerical Prediction of Knock in a Bi-Fuel Engine

1998-10-19
982533
Dedicated natural gas engines suffer the disadvantages of limited vehicle range and relatively few refueling stations. A vehicle capable of operating on either gasoline or natural gas allows alternative fuel usage without sacrificing vehicle range and mobility. However, the bi-fuel engine must be made to provide equal performance on both fuels. Although bi-fuel conversions have existed for a number of years, historically natural gas performance is degraded relative to gasoline due to reduced volumetric efficiency and lower power density of CNG. Much of the performance losses associated with CNG can be overcome by increasing the compression ratio. However, in a bi-fuel application, high compression ratios can result in severe engine knock during gasoline operation. Variable intake valve timing, increased exhaust gas recirculation and retarded ignition timing were explored as a means of controlling knock during gasoline operation of a bi-fuel engine.
Technical Paper

Emissions from Trucks using Fischer-Tropsch Diesel Fuel

1998-10-19
982526
The Fischer-Tropsch (F-T) catalytic conversion process can be used to synthesize diesel fuels from a variety of feedstocks, including coal, natural gas and biomass. Synthetic diesel fuels can have very low sulfur and aromatic content, and excellent autoignition characteristics. Moreover, Fischer-Tropsch diesel fuels may also be economically competitive with California diesel fuel if produced in large volumes. An overview of Fischer-Tropsch diesel fuel production and engine emissions testing is presented. Previous engine laboratory tests indicate that F-T diesel is a promising alternative fuel because it can be used in unmodified diesel engines, and substantial exhaust emissions reductions can be realized. The authors have performed preliminary tests to assess the real-world performance of F-T diesel fuels in heavy-duty trucks. Seven White-GMC Class 8 trucks equipped with Caterpillar 10.3 liter engines were tested using F-T diesel fuel.
Technical Paper

A Long Term Field Emissions Study of Natural Gas Fueled Refuse Haulers in New York City

1998-10-19
982456
New York City Department of Sanitation has operated natural gas fueled refuse haulers in a pilot study: a major goal of this study was to compare the emissions from these natural gas vehicles with their diesel counterparts. The vehicles were tandem axle trucks with GVW (gross vehicle weight) rating of 69,897 pounds. The primary use of these vehicles was for street collection and transporting the collected refuse to a landfill. West Virginia University Transportable Heavy Duty Emissions Testing Laboratories have been engaged in monitoring the tailpipe emissions from these trucks for seven-years. In the later years of testing the hydrocarbons were speciated for non-methane and methane components. Six of these vehicles employed the older technology (mechanical mixer) Cummins L-10 lean burn natural gas engines.
Technical Paper

Models for Predicting Transient Heavy Duty Vehicle Emissions

1998-10-19
982652
Heavy duty engine emissions represent a significant portion of the mobile source emissions inventory, especially with respect to oxides of nitrogen (NOx) emissions. West Virginia University (WVU) has developed an extensive database of continuous transient gaseous emission levels from a wide range of heavy duty diesel vehicles in field operation. This database was built using the WVU Transportable Heavy Duty Vehicle Emission Testing Laboratories. Transient driving cycles used to generate the continuous data were the Central Business District cycle (CBD), 5-peak WVU test cycle, WVU 5-mile route, and the New York City Bus cycle (NYCB). This paper discusses continuous emissions data from a transit bus and a tractor truck, each of them powered by a Detroit Diesel 6V-92 engine. Simple correlational models were developed to relate instantaneous emissions to instantaneous power at the drivewheels.
Technical Paper

Emissions from Heavy-Duty Diesel Engine with EGR using Fuels Derived from Oil Sands and Conventional Crude

2003-10-27
2003-01-3144
The exhaust emissions from a single-cylinder version of a heavy-duty diesel engine with exhaust gas recirculation (EGR) were studied using 12 diesel fuels derived from oil sands and conventional sources. The test fuels were blended from 22 refinery streams to produce four fuels (two from each source) at three different total aromatic levels (10, 20, and 30% by mass). The cetane numbers were held constant at 43. Exhaust emissions were measured using the AVL eight-mode steady-state test procedure. PM emissions were accurately modeled by a single regression equation with two predictors, total aromatics and sulphur content. Sulphate emissions were found to be independent of the type of sulphur compound in the fuel. NOx emissions were accurately modeled by a single regression equation with total aromatics and density as predictor variables. PM and NOx emissions were significantly significantly affected by fuel properties, but crude oil source did not play a role.
Technical Paper

Fuel Additive and Blending Approaches to Reducing NOx Emissions from Biodiesel

2002-05-06
2002-01-1658
Blending of 20% biodiesel with petroleum diesel is well known to cause a significant reduction in PM emissions but also can cause NOx emissions to increase by 1 to 3 percent. This study has examined a number of approaches for NOx reduction for 20% biodiesel/petroleum diesel blends (B20). These approaches included blending with a nominally 10% aromatic diesel, zero aromatic Fisher-Tropsch (FT) diesel, and use of fuel additives. Biodiesel produced from soybean oil and from yellow grease was examined. Testing was conducted in at 1991 DDC Series 60 truck engine using the U.S. heavy-duty FTP. Emissions of NOx, PM, CO, and THC are reported. Relative to certification diesel the B20 fuels exhibited 20% lower PM emissions but 3.3 and 1% higher NOx emissions for soy and yellow grease based blends, respectively. The 10% aromatic fuel exhibited 12% lower PM and 6% lower NOx. FT diesel had the lowest emissions with a 33% reduction in PM and 16% lower NOx.
Technical Paper

Fischer-Tropsch Diesel Fuels - Properties and Exhaust Emissions: A Literature Review

2003-03-03
2003-01-0763
Natural gas, coal, and biomass can be converted to diesel fuel through Fischer-Tropsch (F-T) processes. Variations of the F-T process and/or product work-up can be used to tailor the fuel properties to meet end-users needs. Regardless of feedstock or process, F-T diesel fuels typically have a number of very desirable properties. This review describes typical F-T diesel fuel properties, discusses how these fuel properties impact pollutant emissions, and draws together data from known engine and chassis dynamometer studies of emissions. The comparison of fuel properties reveals that F-T diesel fuel is typically one of two types - a very high cetane number (>74), zero aromatic product or a moderate cetane (∼60), low aromatic (≤15%) product. The very high cetane fuels typically have less desirable low temperature properties while the moderate cetane fuels have cold flow properties more typical of conventional diesel fuels.
Technical Paper

Reduction of PM Emissions from Refuse Trucks through Retrofit of Diesel Particulate Filters

2003-05-19
2003-01-1887
Diesel particulate matter emissions, because they do not disperse as readily gaseous emissions, have a very localized effect and eventually settle to the ground not far from where they were emitted. One subset of heavy-duty diesel vehicles that warrant further attention for controlling particulate emissions matter is sanitation trucks. Cummins Inc. and West Virginia University investigated particulate emissions reduction technologies for New York City Department of Sanitation refuse trucks under the EPA Consent Decree program. Regulated emissions were measured on four retrofitted sanitation trucks with and without the DPF installed. Cummins engines powered all of the retrofitted trucks. The Engelhard DPX reduced PM emissions by 97% and 84% on the New York Garbage Truck Cycle (NYGTC) and Orange County Refuse Truck Cycle (OCRTC) respectively. The Johnson-Matthey CRT system reduced PM emissions by 81% and 87% over the NYGTC and OCRTC respectively.
Technical Paper

Concentrations and Size Distributions of Particulate Matter Emissions from a Class-8 Heavy-duty Diesel Truck Tested in a Wind Tunnel

2003-05-19
2003-01-1894
In an effort to develop engine/vehicle test methods that will reflect real-world emission characteristics, West Virginia University (WVU) designed and conducted a study on a Class-8 tractor with an electronically controlled diesel engine that was mounted on a chassis dynamometer in the Old Dominion University Langley full-scale wind tunnel. With wind speeds set at 88 km/hr in the tunnel, and the tractor operating at 88 km/hr on the chassis dynamometer, a Scanning Mobility Particle Sizer (SMPS) was employed for measuring PM size distributions and concentrations. The SMPS was housed in a container that was attached to a three-axis gantry in the wind tunnel. Background PM size-distributions were measured with another SMPS unit that was located upstream of the truck plume. Ambient temperatures were recorded at each of the sampling locations. The truck was also operated through transient tests with vehicle speeds varying from 65 to 88 km/hr, with a wind speed of 76 km/hr.
Technical Paper

HEAVY DUTY VEHICLE EXHAUST PLUME STUDY IN THE NASA/LANGLEY WIND TUNNEL

2003-05-19
2003-01-1895
Concern over health effects associated with diesel exhaust and debate over the influence of high number counts of particles in diesel exhaust prompted research to develop a methodology for diesel particulate matter (PM) characterization. As part of this program, a tractor truck with an electronically managed diesel engine and a dynamometer were installed in the Old Dominion University (ODU) Langley full-scale wind tunnel. This arrangement permitted repeat measurements of diesel exhaust under realistic and reproducible conditions and permitted examination of the steady exhaust plume at multiple points. Background particle size distribution was characterized using a Scanning Mobility Particle Sizer (SMPS). In addition, a remote sampling system consisting of a SMPS, PM filter arrangement, and carbon dioxide (CO2) analyzer, was attached to a roving gantry allowing for exhaust plume sampling in a three dimensional grid. Raw exhaust CO2 levels and truck performance data were also measured.
X