Refine Your Search

Topic

Author

Search Results

Journal Article

Experimental Investigation of Intake Condition and Group-Hole Nozzle Effects on Fuel Economy and Combustion Noise for Stoichiometric Diesel Combustion in an HSDI Diesel Engine

2009-04-20
2009-01-1123
The goal of this research is to investigate the physical parameters of stoichiometric operation of a diesel engine under a light load operating condition (6∼7 bar IMEP). This paper focuses on improving the fuel efficiency of stoichiometric operation, for which a fuel consumption penalty relative to standard diesel combustion was found to be 7% from a previous study. The objective is to keep NOx and soot emissions at reasonable levels such that a 3-way catalyst and DPF can be used in an aftertreatment combination to meet 2010 emissions regulation. The effects of intake conditions and the use of group-hole injector nozzles (GHN) on fuel consumption of stoichiometric diesel operation were investigated. Throttled intake conditions exhibited about a 30% fuel penalty compared to the best fuel economy case of high boost/EGR intake conditions. The higher CO emissions of throttled intake cases lead to the poor fuel economy.
Journal Article

An Experimental Investigation of Fuel Reactivity Controlled PCCI Combustion in a Heavy-Duty Engine

2010-04-12
2010-01-0864
This study investigates the potential of controlling premixed charge compression ignition (PCCI) combustion strategies by varying fuel reactivity. In-cylinder fuel blending using port fuel injection of gasoline and early cycle, direct-injection of diesel fuel was used for combustion phasing control at a medium engine load of 9 bar net IMEP and was also found to be effective to prevent excessive rates of pressure rise. Parameters used in the experiments were guided from the KIVA-CHEMKIN code with a reduced primary reference fuel (PRF) mechanism including injection timings, fuel percentages, and intake valve closing (IVC) timings for dual-fuel PCCI combustion. The engine experiments were conducted with a conventional common rail injector (i.e., wide angle and large nozzle hole) and demonstrated control and versatility of dual-fuel PCCI combustion with the proper fuel blend, SOI and IVC timings.
Journal Article

Clean Diesel Combustion by Means of the HCPC Concept

2010-04-12
2010-01-1256
Homogeneous-charge, compression-ignition (HCCI) combustion is triggered by spontaneous ignition in dilute homogeneous mixtures. The combustion rate must be reduced by suitable solutions such as high rates of Exhaust Gas Recirculation (EGR) and/or lean mixtures. HCCI is considered a very effective way to reduce engine pollutant emissions, however only a few HCCI engines have entered into production. HCCI combustion currently cannot be extended to the whole engine operating range, especially to high loads, since the use of EGR displaces air from the cylinder, limiting engine mean effective pressure, thus the engine must be able to operate also in conventional mode. This paper concerns a study of an innovative concept to control HCCI combustion in diesel-fuelled engines. The concept consists in forming a pre-compressed homogeneous charge outside the cylinder and gradually admitting it into the cylinder during the combustion process.
Journal Article

Improving the Understanding of Intake and Charge Effects for Increasing RCCI Engine Efficiency

2014-04-01
2014-01-1325
The present experimental engine efficiency study explores the effects of intake pressure and temperature, and premixed and global equivalence ratios on gross thermal efficiency (GTE) using the reactivity controlled compression ignition (RCCI) combustion strategy. Experiments were conducted in a heavy-duty single-cylinder engine at constant net load (IMEPn) of 8.45 bar, 1300 rev/min engine speed, with 0% EGR, and a 50% mass fraction burned combustion phasing (CA50) of 0.5°CA ATDC. The engine was port fueled with E85 for the low reactivity fuel and direct injected with 3.5% 2-ethylhexyl nitrate (EHN) doped into 91 anti-knock index (AKI) gasoline for the high-reactivity fuel. The resulting reactivity of the enhanced fuel corresponds to an AKI of approximately 56 and a cetane number of approximately 28. The engine was operated with a wide range of intake pressures and temperatures, and the ratio of low- to high-reactivity fuel was adjusted to maintain a fixed speed-phasing-load condition.
Journal Article

A CFD Study of Post Injection Influences on Soot Formation and Oxidation under Diesel-Like Operating Conditions

2014-04-01
2014-01-1256
One in-cylinder strategy for reducing soot emissions from diesel engines while maintaining fuel efficiency is the use of close-coupled post injections, which are small fuel injections that follow the main fuel injection after a short delay. While the in-cylinder mechanisms of diesel combustion with single injections have been studied extensively and are relatively well understood, the in-cylinder mechanisms affecting the performance and efficacy of post injections have not been clearly established. Here, experiments from a single-cylinder heavy-duty optical research engine incorporating close- coupled post injections are modeled with three dimensional (3D) computational fluid dynamics (CFD) simulations. The overall goal is to complement experimental findings with CFD results to gain more insight into the relationship between post-injections and soot. This paper documents the first stage of CFD results for simulating and analyzing the experimental conditions.
Journal Article

Multi-Dimensional-Modeling-Based Development of a Novel 2-Zone Combustion Chamber Applied to Reactivity Controlled Compression Ignition Combustion

2015-04-14
2015-01-0840
A novel 2-zone combustion chamber concept (patent pending) was developed using multi-dimensional modeling. At minimum volume, an axial projection in the piston divides the volume into distinct zones joined by a communication channel. The projection provides a means to control the mixture formation and combustion phasing within each zone. The novel combustion system was applied to reactivity controlled compression ignition (RCCI) combustion in both light-duty and heavy-duty diesel engines. Results from the study of an 8.8 bar BMEP, 2600 RPM operating condition are presented for the light-duty engine. The results from the heavy-duty engine are at an 18.1 bar BMEP, 1200 RPM operating condition. The effect of several major design features were investigated including the volume split between the inner and outer combustion chamber volumes, the clearance (squish) height, and the top ring land (crevice) volume.
Journal Article

Characterization of Reactivity Controlled Compression Ignition (RCCI) Using Premixed Gasoline and Direct-Injected Gasoline with a Cetane Improver on a Multi-Cylinder Engine

2015-04-14
2015-01-0855
The focus of the present study was to characterize Reactivity Controlled Compression Ignition (RCCI) using a single-fuel approach of gasoline and gasoline mixed with a commercially available cetane improver on a multi-cylinder engine. RCCI was achieved by port-injecting a certification grade 96 research octane gasoline and direct-injecting the same gasoline mixed with various levels of a cetane improver, 2-ethylhexyl nitrate (EHN). The EHN volume percentages investigated in the direct-injected fuel were 10, 5, and 2.5%. The combustion phasing controllability and emissions of the different fueling combinations were characterized at 2300 rpm and 4.2 bar brake mean effective pressure over a variety of parametric investigations including direct injection timing, premixed gasoline percentage, and intake temperature. Comparisons were made to gasoline/diesel RCCI operation on the same engine platform at nominally the same operating condition.
Journal Article

Experiments and Modeling of Adaptive Injection Strategies (AIS) in Low Emissions Diesel Engines

2009-04-20
2009-01-0127
Homogeneous Charge Compression Ignition (HCCI) has been shown as a promising technique for simultaneous NOx and soot reduction while maintaining diesel-like efficiency. Although HCCI has been shown to yield very low emissions levels, spray-wall impingement and high pressure rise rates can be problematic due to the early injection timings necessary for certain HCCI operations. To address spray-wall impingement, an Adaptive Injection Strategy (AIS) was employed. This strategy uses multiple pulses at both low and high injection pressures to prepare an optimal in-cylinder mixture. A unique Variable Pressure Pulse (VPP) was developed to investigate the AIS concept experimentally. The VPP has the capability of delivering multiple injections at both low and high injection pressures (∼100 bar and ∼1000 bar respectively) through a single injector in the same engine cycle. Comparisons were made between model predictions and engine experiments using the VPP system.
Journal Article

Assessment of Optimization Methodologies to Study the Effects of Bowl Geometry, Spray Targeting and Swirl Ratio for a Heavy-Duty Diesel Engine Operated at High-Load

2008-04-14
2008-01-0949
In the present paper optimization tools are used to recommend low-emission engine combustion chamber designs, spray targeting and swirl ratio levels for a heavy-duty diesel engine operated at high-load. The study identifies aspects of the combustion and pollution formation that are affected by mixing processes, and offers guidance for better matching of the piston geometry with the spray plume geometry for enhanced mixing. By coupling a GA (genetic algorithm) with the KIVA-CFD code, and also by utilizing an automated grid generation technique, multi-objective optimizations with goals of low emissions and fuel economy were achieved. Three different multi-objective genetic algorithms including a Micro-Genetic Algorithm (μGA), a Nondominated Sorting Genetic Algorithm II (NSGA II) and an Adaptive Range Multi-Objective Genetic Algorithm (ARMOGA) were compared for conducting the optimization under the same conditions.
Journal Article

Modeling the Effects of In-Cylinder Flows on HSDI Diesel Engine Performance and Emissions

2008-04-14
2008-01-0649
In the present work the three-dimensional KIVA CFD code was used to simulate the combustion process in a HSDI diesel engine. State-of-the-art models, including the KH-RT spray breakup model, the RNG k-ε turbulence model, and a n-heptane reduced chemistry including reduced GRI NOx mechanism were used. The performances of two combustion models, KIVA-CHEMKIN and GAMUT (KIVA-CHEMKIN-G), coupled with 2-step and multi-step phenomenological soot models were compared. The numerical results were compared with available experimental data obtained from an optically accessible HSDI engine and good agreement was obtained. To assess the effects of the in-cylinder flow field on combustion and emissions, off-centered swirl flows were also considered. In these studies, the swirl center was initialized at different positions in the chamber for different cases to simulate the effects of different intake flow arrangements.
Journal Article

Effects of Piston Bowl Geometry on Mixture Development and Late-Injection Low-Temperature Combustion in a Heavy-Duty Diesel Engine

2008-04-14
2008-01-1330
Low-temperature combustion (LTC) strategies for diesel engines are of increasing interest because of their potential to significantly reduce particulate matter (PM) and nitrogen oxide (NOx) emissions. LTC with late fuel injection further offers the benefit of combustion phasing control because ignition is closely coupled to the fuel injection event. But with a short ignition-delay, fuel jet mixing processes must be rapid to achieve adequate premixing before ignition. In the current study, mixing and pollutant formation of late-injection LTC are studied in a single-cylinder, direct-injection, optically accessible heavy-duty diesel engine using three laser-based imaging diagnostics. Simultaneous planar laser-induced fluorescence of the hydroxyl radical (OH) and combined formaldehyde (H2CO) and polycyclic aromatic hydrocarbons (PAH) are compared with vapor-fuel concentration measurements from a non-combusting condition.
Journal Article

Development of an Improved NOx Reaction Mechanism for Low Temperature Diesel Combustion Modeling

2008-10-06
2008-01-2413
The development of a new Nitric Oxide (NOx) reaction mechanism has been conducted by adding species, including hydrogen cyanide (HCN) and the CH radical to a reduced chemistry diesel combustion model. The additional chemical reactions were added to the ERC's reduced 12-step NOx mechanism, which consists of N, NO, N2O, and NO2. The new NOx mechanism was implemented into the KIVA/ERC-CHEMKIN code and was found to be able to predict the experimentally observed trend that the amount of engine-out NOx decreases as engine load is increased, which is not reproduced by the current reduced NOx mechanism. HCN and CH were found to be species that bridge CxHy products and N radicals via the reaction CH+N2→HCN+N under high equivalence ratio conditions, and Zeldovich NO formation is suppressed by the formation of HCN, a species in the Fenimore NO formation pathway. The additional species and reactions were also found to influence the prediction of engine-out soot emissions.
Journal Article

Optimization of a HSDI Diesel Engine for Passenger Cars Using a Multi-Objective Genetic Algorithm and Multi-Dimensional Modeling

2009-04-20
2009-01-0715
A multi-objective genetic algorithm coupled with the KIVA3V release 2 code was used to optimize the piston bowl geometry, spray targeting, and swirl ratio levels of a high speed direct injected (HSDI) diesel engine for passenger cars. Three modes, which represent full-, mid-, and low-loads, were optimized separately. A non-dominated sorting genetic algorithm II (NSGA II) was used for the optimization. High throughput computing was conducted using the CONDOR software. An automated grid generator was used for efficient mesh generation with variable geometry parameters, including open and reentrant bowl designs. A series of new spray models featuring reduced mesh dependency were also integrated into the code. A characteristic-time combustion (CTC) model was used for the initial optimization for time savings. Model validation was performed by comparison with experiments for the baseline engine at full-, mid-, and low-load operating conditions.
Journal Article

Study of High Speed Gasoline Direct Injection Compression Ignition (GDICI) Engine Operation in the LTC Regime

2011-04-12
2011-01-1182
An investigation of high speed direct injection (DI) compression ignition (CI) engine combustion fueled with gasoline (termed GDICI for Gasoline Direct-Injection Compression Ignition) in the low temperature combustion (LTC) regime is presented. As an aid to plan engine experiments at full load (16 bar IMEP, 2500 rev/min), exploration of operating conditions was first performed numerically employing a multi-dimensional CFD code, KIVA-ERC-Chemkin, that features improved sub-models and the Chemkin library. The oxidation chemistry of the fuel was calculated using a reduced mechanism for primary reference fuel combustion. Operation ranges of a light-duty diesel engine operating with GDICI combustion with constraints of combustion efficiency, noise level (pressure rise rate) and emissions were identified as functions of injection timings, exhaust gas recirculation rate and the fuel split ratio of double-pulse injections.
Journal Article

Fuel Reactivity Controlled Compression Ignition (RCCI) Combustion in Light- and Heavy-Duty Engines

2011-04-12
2011-01-0357
Single-cylinder engine experiments were used to investigate a fuel reactivity controlled compression ignition (RCCI) concept in both light- and heavy-duty engines and comparisons were made between the two engine classes. It was found that with only small changes in the injection parameters, the combustion characteristics of the heavy-duty engine could be adequately reproduced in the light-duty engine. Comparisons of the emissions and performance showed that both engines can simultaneously achieve NOx below 0.05 g/kW-hr, soot below 0.01 g/kW-hr, ringing intensity below 4 MW/m2, and gross indicated efficiencies above 50 per cent. However, it was found that the peak gross indicated efficiency of the baseline light-duty engine was approximately 7 per cent lower than the heavy-duty engine. The energy balances of the two engines were compared and it was found that the largest factor contributing to the lower efficiency of the light-duty engine was increased heat transfer losses.
Journal Article

Computational Optimization of a Heavy-Duty Compression Ignition Engine Fueled with Conventional Gasoline

2011-04-12
2011-01-0356
The potential of low temperature combustion to yield low NOx and soot while maintaining diesel-like thermal efficiencies has been demonstrated through countless studies. Methods of achieving low temperature combustion are just as numerous and they range from using high cetane number fuels, like diesel, with large amounts of exhaust gas recirculation, to completely premixing a high octane number fuel, like gasoline, and approaching an HCCI-like condition. The potential of operating a heavy-duty compression ignition engine fueled with conventional gasoline in a partially premixed combustion mode to have high thermal efficiency and low emissions has been demonstrated in this study. The objective of this work was to optimize the engine using computational tools. The KIVA3V-CHEMKIN code, a multi-dimensional engine CFD model was coupled to a Nondominated Sorting Genetic Algorithm (NSGA II), which is a multi-objective genetic algorithm.
Journal Article

Fuel Effects on Reactivity Controlled Compression Ignition (RCCI) Combustion at Low Load

2011-04-12
2011-01-0361
Reactivity Controlled Compression Ignition combustion (RCCI) has been demonstrated at mid to high loads [1, 2, 3, 4, 5, 6] as a method to operate an internal combustion engine that produces low NOx and low PM emissions with high thermal efficiency. The current study investigates RCCI engine operation at loads of 2 and 4.5 bar gross IMEP at engine speeds between 800 and 1700 rev/min. This load range was selected to cover the range from the previous work of 6 bar gIMEP down to an off-idle load at 2 bar. The fueling strategy for the low load investigation consisted of in-cylinder fuel blending using port-fuel-injection of gasoline and early cycle, direct-injection of either diesel fuel or gasoline doped with 3.5% by volume 2-EHN (2-ethylhexyl nitrate). At these loads, engine operating conditions such as inlet air temperature, port fuel percentage, and engine speed were varied to investigate their effect on combustion.
Journal Article

Computational Optimization of Reactivity Controlled Compression Ignition in a Heavy-Duty Engine with Ultra Low Compression Ratio

2011-09-11
2011-24-0015
Many studies have demonstrated ability of low temperature combustion to yield low NOx and soot while maintaining diesel-like thermal efficiencies. Methods of achieving low temperature combustion are numerous and range from using high cetane number fuels, like diesel, with large amounts of exhaust gas recirculation, to completely premixing a high octane number fuel, like gasoline, and approaching an HCCI-like condition. Both of the aforementioned techniques have relatively short combustion duration that results in very a rapid rate of heat release, and hence very rapid rates of pressure rise. This has been one of the major challenges for premixed, low temperature combustion at mid and high load. Reactivity Controlled Compression Ignition (RCCI) has been introduced recently, which is a dual fuel partially premixed combustion concept.
Journal Article

Combustion Model for Biodiesel-Fueled Engine Simulations using Realistic Chemistry and Physical Properties

2011-04-12
2011-01-0831
Biodiesel-fueled engine simulations were performed using the KIVA3v-Release 2 code coupled with Chemkin-II for detailed chemistry. The model incorporates a reduced mechanism that was created from a methyl decanoate/methyl-9-decenoate mechanism developed at the Lawrence Livermore National Laboratory. A combination of Directed Relation Graph, chemical lumping, and limited reaction rate tuning was used to reduce the detailed mechanism from 3299 species and 10806 reactions to 77 species and 209 reactions. The mechanism was validated against its detailed counterpart and predicted accurate ignition delay times over a range of relevant operating conditions. The mechanism was then combined with the ERC PRF mechanism to include n-heptane as an additional fuel component. The biodiesel mechanism was applied in KIVA using a discrete multi-component model with accurate physical properties for the five common components of real biodiesel fuel.
Journal Article

Heavy-Duty RCCI Operation Using Natural Gas and Diesel

2012-04-16
2012-01-0379
Many recent studies have shown that the Reactivity Controlled Compression Ignition (RCCI) combustion strategy can achieve high efficiency with low emissions. However, it has also been revealed that RCCI combustion is difficult at high loads due to its premixed nature. To operate at moderate to high loads with gasoline/diesel dual fuel, high amounts of EGR or an ultra low compression ratio have shown to be required. Considering that both of these approaches inherently lower thermodynamic efficiency, in this study natural gas was utilized as a replacement for gasoline as the low-reactivity fuel. Due to the lower reactivity (i.e., higher octane number) of natural gas compared to gasoline, it was hypothesized to be a better fuel for RCCI combustion, in which a large reactivity gradient between the two fuels is beneficial in controlling the maximum pressure rise rate.
X