Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Emissions Characterization from Different Technology Heavy-Duty Engines Retrofitted for CNG/Diesel Dual-Fuel Operation

2015-04-14
2015-01-1085
This study was aimed at experimentally investigating the impact of diesel/natural gas (NG) dual-fuel retrofitting onto gaseous emissions emitted by i) legacy, model year (MY) 2005 heavy-duty engines with cooled EGR and no after-treatment system, and ii) a latest technology engine equipped with DPF and urea-SCR after-treatment systems that is compliant with 2010 US-EPA emissions standards. In particular, two different dual-fuel conversion kits were evaluated in this study with pure methane (CH4) being used as surrogate for natural gas. Experiments were conducted on an engine dynamometer over a 13-mode steady-state test cycle as well as the transient FTP required for engine certification while gaseous emissions were sampled through a CVS system. Tailpipe NOx emissions were observed at a comparable level for diesel and diesel/CH4 dual-fuel operation for the 2010 compliant engine downstream the SCR.
Journal Article

Development of an Ammonia Reduction Aftertreatment Systems for Stoichiometric Natural Gas Engines

2017-01-10
2017-26-0143
Three-way catalyst equipped stoichiometric natural gas vehicles have proven to be an effective alternative fuel strategy that has shown superior low NOx benefits in comparison to diesels equipped with SCR. However, recent studies have shown the TWC activity to contribute to high levels of tailpipe ammonia emissions. Although a non-regulated pollutant, ammonia is a potent pre-cursor to ambient secondary PM formation. Ammonia (NH3) is an inevitable catalytic byproduct of TWCduring that results also corresponds to lowest NOx emissions. The main objective of the study is to develop a passive SCR based NH3 reduction strategy that results in an overall reduction of NH3 as well as NOx emissions from a stoichiometric spark ignited natural gas engine. The study investigated the characteristics of Fe-based and Cu-based zeolite SCR catalysts in storage, and desorption of ammonia at high exhaust temperature conditions, that are typical of stoichiometric natural gas engines.
Journal Article

Characterization of Hydrocarbon Emissions from Gasoline Direct-Injection Compression Ignition Engine Operating on a Higher Reactivity Gasoline Fuel

2017-03-28
2017-01-0747
Low temperature combustion engine technologies are being investigated for high efficiency and low emissions. However, such engine technologies often produce higher engine-out hydrocarbon (HC) and carbon monoxide (CO) emissions, and their operating range is limited by the fuel properties. In this study, two different fuels, a US market gasoline containing 10% ethanol (RON 92 E10) and a higher reactivity gasoline (RON 80 E0), were compared on Delphi’s second generation Gasoline Direct-Injection Compression Ignition (Gen 2.0 GDCI) multi-cylinder engine. The engine was evaluated at three operating points ranging from a light load condition (800 rpm/2 bar IMEPg) to medium load conditions (1500 rpm/6 bar and 2000 rpm/10 bar IMEPg). The engine was equipped with two oxidation catalysts, between which was located the exhaust gas recirculation (EGR) inlet. Samples were taken at engine-out, between the catalysts, and at tailpipe locations.
Technical Paper

Detection of Polar Compounds Condensed on Particulate Matter Using Capillary Electrophoresis-Mass Spectrometry

2020-04-14
2020-01-0395
A new analytical method to aid in the understanding of the organic carbon (OC) phase of particulate matter (PM) from advanced compression ignition (ACI) operating modes, is presented. The presence of NO2 and unburned fuel aromatics in ACI emissions, and the low exhaust temperatures that result from this low temperature combustion strategy, provide the right conditions for the formation of carboxylic acids and nitroaromatic compounds. These polar compounds contribute to OC in the PM and are not typically measured using nonpolar solvent extraction methods such as the soluble organic fraction (SOF) method. The new extraction and detection method employs capillary electrophoresis with electrospray ionization mass spectrometry (CE-ESI MS) and was specifically developed to determine polar organic compounds in the ACI PM emissions. The new method identified both nitrophenols and aromatic carboxylic acids in the ACI PM.
Journal Article

Removal of EGR Cooler Deposit Material by Flow-Induced Shear

2013-04-08
2013-01-1292
A number of studies have identified a tendency for exhaust gas recirculation (EGR) coolers to foul to a steady-state level and subsequently not degrade further. One possible explanation for this behavior is that the shear force imposed by the gas velocity increases as the deposit thickens. If the shear force reaches a critical level, it achieves a removal of the deposit material that can balance the rate of deposition of new material, creating a stabilized condition. This study reports efforts to observe removal of deposit material in-situ during fouling studies as well as an ex-situ removal through the use of controlled air flows. The critical gas velocity and shear stress necessary to cause removal of deposit material is identified and reported. In-situ observations failed to show convincing evidence of a removal of deposit material. The results show that removal of deposit material requires a relatively high velocity of 40 m/s or higher to cause removal.
Technical Paper

Dynamic Modeling of the Stiller-Smith Mechanism in an Application of a 4-Cylinder Plunger Pump System

1991-02-01
910073
The development of a mathematical model of StillerSmith Mechanism for the application of a 4-cylinder plunger pump system is presented. The magnitude and direction of the internal dynamic load are obtained by solving a set of equations using the overall geometric parameters, prescribed motions, inertia distribution, and applied torques on the system. The simulation presented here yields the history of the internal loads, which are then normalized with respect to the required peak output load on the plungers, through an entire rotary cycle. The approach allows for the development of further design criteria through parametric sensitivity studies.
Technical Paper

Natural Gas and Diesel Transit Bus Emissions: Review and Recent Data

1997-11-17
973203
Natural Gas engines are viewed as an alternative to diesel power in the quest to reduce heavy duty vehicle emissions in polluted urban areas. In particular, it is acknowledged that natural gas has the potential to reduce the inventory of particulate matter, and this has encouraged the use of natural gas engines in transit bus applications. Extensive data on natural gas and diesel bus emissions have been gathered using two Transportable Heavy Duty Vehicle Emissions Testing Laboratories, that employ chassis dynamometers to simulate bus inertia and road load. Most of the natural gas buses tested prior to 1997 were powered by Cummins L-10 engines, which were lean-burn and employed a mechanical mixer for fuel introduction. The Central Business District (CBD) cycle was used as the test schedule.
Technical Paper

Emissions Testing of a Hybrid Fuel Cell Bus

1998-02-23
980680
The fuel cell bus program at Georgetown University (GU) has directed the operational development and testing of three hybrid fuel cell powered buses for transit operation. These are the world's first liquid-fueled, fuel cell powered road vehicles. This paper describes the emissions testing of one of these buses on a heavy duty chassis dynamometer at West Virginia University (WVU). The tested bus was driven by a 120 kW DC motor and utilized a 50 kW phosphoric acid fuel cell (PAFC) as an energy source with a 100 kW battery for supplemental power. A methanol/water fuel mixture was converted by a steam reformer to a hydrogen rich gas mixture for use in a fuel cell stack. Emissions from the reformer, fuel cell stack and startup burner were monitored for both transient and steady-state operation.
Technical Paper

In Situ Measurement of Fuel Absorption into the Cylinder Wall Oil Film During Engine Cold Start

1998-02-01
981054
The absorption of unburned fuel into the engine cylinder wall oil film has been identified as a source of hydrocarbon (HC) emissions from spark-ignited (SI)engines. While significant work has been done under steady-state operating conditions to quantify the contribution of this mechanism to overall unburned hydrocarbon emissions, little work has focused on cold starting conditions and in situ measurement of the fuel / oil film interaction. The work reported here shows how laser-induced fluorescence (LIF) spectroscopy can be used to make in situ measurements of the absorption of fuel into the cylinder wall oil film of a single cylinder engine. Measurements were made at two points in the engine cycle under cold start conditions. Results indicate that fuel concentration in the oil film reached a maximum of fifty percent (50%) during cold start operation, though fuel was present in the oil film throughout the engine cycle.
Technical Paper

Parametric Study of 2007 Standard Heavy-Duty Diesel Engine Particulate Matter Sampling System

2007-01-23
2007-01-0060
Heavy-Duty Diesel (HDD) engines' particulate matter (PM) emissions are most often measured quantitatively by weighing filters that collect diluted exhaust samples pre- and post-test. PM sampling systems that dilute exhaust gas and collect PM samples have different effects on measured PM data. Those effects usually contribute to inter-laboratory variance. The U.S. Environmental Protection Agency (EPA)'s 2007 PM emission measurement regulations for the test of HDD engines should reduce variability, but must also cope with PM mass that is an order of magnitude lower than legacy engine testing. To support the design of a 2007 US standard HDD PM emission sampling system, a parametric study based on a systematic Simulink® model was performed. This model acted as an auxiliary design tool when setting up a new 2007 HDD PM emission sampling system in a heavy-duty test cell at West Virginia University (WVU). It was also designed to provide assistance in post-test data processing.
Technical Paper

Neural Network Modeling of Emissions from Medium-Duty Vehicles Operating on Fisher-Tropsch Synthetic Fuel

2007-04-16
2007-01-1080
West Virginia University has conducted research to characterize the emissions from medium-duty vehicles operating on Fischer-Tropsch synthetic gas-to-liquid compression ignition fuel. The West Virginia University Transportable Heavy Vehicle Emissions Testing Laboratory was used to collect data for gaseous emissions (carbon dioxide, carbon monoxide, oxides of nitrogen, and total hydrocarbon) while the vehicles were exercised through a representative driving schedule, the New York City Bus Cycle (NYCB). Artificial neural networks were used to model emissions to enhance the capabilities of computer-based vehicle operation simulators. This modeling process is presented in this paper. Vehicle velocity, acceleration, torque at rear axel, and exhaust temperature were used as inputs to the neural networks. For each of the four gaseous emissions considered, one set of training data and one set of validating data were used, both based on the New York City Bus Cycle.
Technical Paper

Emissions from Trucks using Fischer-Tropsch Diesel Fuel

1998-10-19
982526
The Fischer-Tropsch (F-T) catalytic conversion process can be used to synthesize diesel fuels from a variety of feedstocks, including coal, natural gas and biomass. Synthetic diesel fuels can have very low sulfur and aromatic content, and excellent autoignition characteristics. Moreover, Fischer-Tropsch diesel fuels may also be economically competitive with California diesel fuel if produced in large volumes. An overview of Fischer-Tropsch diesel fuel production and engine emissions testing is presented. Previous engine laboratory tests indicate that F-T diesel is a promising alternative fuel because it can be used in unmodified diesel engines, and substantial exhaust emissions reductions can be realized. The authors have performed preliminary tests to assess the real-world performance of F-T diesel fuels in heavy-duty trucks. Seven White-GMC Class 8 trucks equipped with Caterpillar 10.3 liter engines were tested using F-T diesel fuel.
Technical Paper

A Long Term Field Emissions Study of Natural Gas Fueled Refuse Haulers in New York City

1998-10-19
982456
New York City Department of Sanitation has operated natural gas fueled refuse haulers in a pilot study: a major goal of this study was to compare the emissions from these natural gas vehicles with their diesel counterparts. The vehicles were tandem axle trucks with GVW (gross vehicle weight) rating of 69,897 pounds. The primary use of these vehicles was for street collection and transporting the collected refuse to a landfill. West Virginia University Transportable Heavy Duty Emissions Testing Laboratories have been engaged in monitoring the tailpipe emissions from these trucks for seven-years. In the later years of testing the hydrocarbons were speciated for non-methane and methane components. Six of these vehicles employed the older technology (mechanical mixer) Cummins L-10 lean burn natural gas engines.
Technical Paper

Models for Predicting Transient Heavy Duty Vehicle Emissions

1998-10-19
982652
Heavy duty engine emissions represent a significant portion of the mobile source emissions inventory, especially with respect to oxides of nitrogen (NOx) emissions. West Virginia University (WVU) has developed an extensive database of continuous transient gaseous emission levels from a wide range of heavy duty diesel vehicles in field operation. This database was built using the WVU Transportable Heavy Duty Vehicle Emission Testing Laboratories. Transient driving cycles used to generate the continuous data were the Central Business District cycle (CBD), 5-peak WVU test cycle, WVU 5-mile route, and the New York City Bus cycle (NYCB). This paper discusses continuous emissions data from a transit bus and a tractor truck, each of them powered by a Detroit Diesel 6V-92 engine. Simple correlational models were developed to relate instantaneous emissions to instantaneous power at the drivewheels.
Technical Paper

Nano Particulate Matter Evolution in a CFR1065 Dilution Tunnel

2009-11-02
2009-01-2672
Dual primary full-flow dilution tunnels represent an integral part of a heavy-duty transportable emissions measurement laboratory designed and constructed to comply with US Code of Federal Regulations (CFR) 40 Part 1065 requirements. Few data exist to characterize the evolution of particulate matter (PM) in full scale dilution tunnels, particularly at very low PM mass levels. Size distributions of ultra-fine particles in diesel exhaust from a naturally aspirated, 2.4 liter, 40 kW ISUZU C240 diesel engine equipped with a diesel particulate filter (DPF) were studied in one set of standard primary and secondary dilution tunnels with varied dilution ratios. Particle size distribution data, during steady-state engine operation, were collected using a Cambustion DMS500 Fast Particulate Spectrometer. Measurements were made at four positions that spanned the tunnel cross section after the mixing orifice plate for the primary dilution tunnel and at the outlet of the secondary dilution tunnel.
Technical Paper

Creation and Evaluation of a Medium Heavy-Duty Truck Test Cycle

2003-10-27
2003-01-3284
The California Air Resources Board (ARB) developed a Medium Heavy-Duty Truck (MHDT) schedule by selecting and joining microtrips from real-world MHDT. The MHDT consisted of three modes; namely, a Lower Speed Transient, a Higher Speed Transient, and a Cruise mode. The maximum speeds of these modes were 28.9, 58.2 and 66.0 mph, respectively. Each mode represented statistically selected truck behavior patterns in California. The MHDT is intended to be applied to emissions characterization of trucks (14,001 to 33,000lb gross vehicle weight) exercised on a chassis dynamometer. This paper presents the creation of the MHDT and an examination of repeatability of emissions data from MHDT driven through this schedule. Two trucks were procured to acquire data using the MHDT schedule. The first, a GMC truck with an 8.2-liter Isuzu engine and a standard transmission, was tested at laden weight (90% GVW, 17,550lb) and at unladen weight (50% GVW, 9,750lb).
Technical Paper

Measuring Diesel Emissions with a Split Exhaust Configuration

2001-05-07
2001-01-1949
West Virginia University evaluated diesel oxidation catalysts (DOC) and lean-NOX catalysts as part of Diesel Emissions Control-Sulfur Effects (DECSE) project. In order to perform thermal aging of the DOC and lean-NOX catalysts simultaneously and economically, each catalyst was sized to accommodate half of the engine exhaust flow. Simultaneous catalyst aging was then achieved by splitting the engine exhaust into two streams such that approximately half of the total exhaust flowed through the DOC and half through the lean-NOX catalyst. This necessitated splitting the engine exhaust into two streams during emissions measurements. Throttling valves installed in each branch of the split exhaust were adjusted so that approximately half the engine exhaust passed though the active catalyst under evaluation and into a full flow dilution tunnel for emissions measurement.
Technical Paper

Measurement of Brake-specific NOX Emissions using Zirconia Sensors for In-use, On-board Heavy-duty Vehicle Applications

2002-05-06
2002-01-1755
Emissions tests for heavy -duty diesel-fueled engines and vehicles are normally performed using engine dynamometers and chassis dynamometers, respectively, with laboratory grade gaseous concentration measurement analyzers and supporting test equipment. However, a considerable effort has been recently expended on developing in-use, on-board tools to measure brake-specific emissions from heavy -duty vehicles with the highest degree of accuracy and precision. This alternative testing methodology would supplement the emissions data that is collected from engine and chassis dynamometer tests. The on-board emissions testing methodology entails actively recording emissions and vehicle operating parameters (engine speed and load, vehicle speed etc.) from vehicles while they are operating on the road. This paper focuses on in-use measurements of NOX with zirconium oxide sensors and other portable NOX detectors.
Technical Paper

Measurement of In-Use, On-Board Emissions from Heavy-Duty Diesel Vehicles:Mobile Emissions Measurement System

2001-09-24
2001-01-3643
Emissions tests for heavy-duty diesel-fueled vehicles are normally performed using an engine dynamometer or a chassis dynamometer. Both of these methods generally entail the use of laboratory-grade emissions measurement instrumentation, a CVS system, an environment control system, a dynamometer, and associated data acquisition and control systems. The results obtained from such tests provide a means by which engines may be compared to the emissions standards, but may not be truly indicative of an engine's in-vehicle performance while operating on the road. An alternative to such a testing methodology would be to actively record the emissions from a vehicle while it was operating on-road. A considerable amount of discussion has been focused on the development of on-road emissions measurement systems (OREMS) that would provide for such in-use emissions data collection.
Technical Paper

Research Approach for Aging and Evaluating Diesel Lean-NOx Catalysts

2001-09-24
2001-01-3620
The goal of the Diesel Emissions Control-Sulfur Effects (DECSE) program was to determine the impact of diesel fuel sulfur levels on emissions control devices that could lower emissions of oxides of nitrogen (NOX) and particulate matter (PM) from on-highway trucks and buses. West Virginia University (WVU) performed evaluations of lean-NOx catalysts to determine the effects of fuel sulfur content on emissions reduction efficiency and catalyst durability in the first 250 hours of operation. A Cummins ISM370 engine (10.8 liter, 370 horsepower), typical of heavy -duty truck applications, was utilized to evaluate high-temperature lean-NOX catalyst while a Navistar T444E (7.3 liter, 210 horsepower), typical of medium-duty applications, was used to evaluate low-temperature catalyst. Catalysts were evaluated periodically during the first 250 hours of exposure to exhaust from engines operated on 3ppm, 30ppm, 150ppm and 350ppm sulfur content diesel fuel.
X