Refine Your Search

Topic

Author

Search Results

Journal Article

Determination of the Pressure Distribution Beneath Two- and Three-Inch Wide Racing Safety Belts

2008-12-02
2008-01-2977
This study examines the static pressure distribution under both width belts in the shoulder and the pelvis of 15 volunteer subjects. The subjects applied the belt loads to themselves through a lever and pulley system. The configuration of the belts simulated the typical arrangement of a six-point belted upright-seated racing driver. The pressure distribution between the belt and the volunteer's body was determined and recorded with Tek-Scan pressure sensing grids. The paper presents the results of the measurements by comparing the actual area of significant loading beneath the two widths and materials of both lap and shoulder belts. In, general, there no significant increase in loaded area for the wider belts.
Journal Article

Injury Risk Investigation of the Small, Rear-seat Occupant in Side Impact

2012-04-16
2012-01-0092
For children seated next to the struck side, real-world crash outcome was determined for the rear-seat of passenger vehicles over the entire range of side impact crash severities. The method was first to calculate the actual risk for an occupant based on field data. The data sources were non-rollover, tow-away crashes from the 1997 - 2009 National Automotive Sampling System. By limiting the struck passenger vehicle to model year 1985 or newer, field data were identified for a total of 588 children. In all crashes, the child was seated in the rear-seat area on the struck side of the passenger vehicle. A matrix of MADYMO model simulations calculated the response of child dummies over the entire range of the field data. Age-dependent, moderate-to-serious (AIS ≥ 2) injury risk curves were derived and evaluated for children in side impact. Risks to the children were calculated by combining the derived child risk curves with the MADYMO model simulations.
Technical Paper

Biomechanical Performance of a New Head and Neck Support

1990-10-01
902312
The heads of auto racing drivers and military pilots are usually not supported so that neck fatigue and injury can be a serious problem. A new Head And Neck Support (HANS) is being developed to reduce head motions and neck loads. The biomechanical performance of HANS has been evaluated by crash victim modeling with CAL 3-D and by impact sled testing with a Hybrid III dummy. Modeling and testing were conducted at 30 and 35 mph BEV and with acceleration directions from the front, right front, and right lateral. The model and test results show that head motions, neck loading, and the potential for neck injury are all significantly reduced with HANS compared to without HANS.
Technical Paper

Dynamic Response and Mathematical Model of the Side Impact Dummy

1990-10-01
902321
A series of rigid wall tests have been conducted at three impact velocities to quantify the dynamic response of the Side Impact Dummy (SID) developed by US DOT. This paper reports the chest, pelvis and head responses of the dummy at various filter frequencies and describes the development and verification of the three-dimensional mathematical model of the Side Impact Dummy utilizing the rigid wall test results. The mathematical model uses the mass distribution and the linkage system of the current Part 572, Hybrid II dummy which forms the basic platform of the SID. The unique chest of the dummy is modeled by two systems of linkages simulating the rib cage and the jacket. Also included in the model is the internal hardware of the chest, e.g. a damper, rib stopper and a clavicle simulator at the upper spine. The material and linkage models are based on static and dynamic tests of the dummy components.
Technical Paper

Side Impact Modeling using Quasi-Static Crush Data

1991-02-01
910601
This paper describes the development of a three-dimensional lumped-mass structure and dummy model to study barrier-to-car side impacts. The test procedures utilized to develop model input data are also described. The model results are compared to crash test results from a series of six barrier-to-car crash tests. Sensitivity analysis using the validated model show the necessity to account for dynamic structural rate effects when using quasi-statically measured vehicle crush data.
Technical Paper

Biomechanical Investigation of Thoracolumbar Spine Fractures in Indianapolis-type Racing Car Drivers during Frontal Impacts

2006-12-05
2006-01-3633
The purpose of this study is to provide an understanding of driver kinematics, injury mechanisms and spinal loads causing thoracolumbar spinal fractures in Indianapolis-type racing car drivers. Crash reports from 1996 to 2006, showed a total of forty spine fracture incidents with the thoracolumbar region being the most frequently injured (n=15). Seven of the thoracolumbar fracture cases occurred in the frontal direction and were a higher injury severity as compared to rear impact cases. The present study focuses on thoracolumbar spine fractures in Indianapolis-type racing car drivers during frontal impacts and was performed using driver medical records, crash reports, video, still photographic images, chassis accelerations from on-board data recorders and the analysis tool MADYMO to simulate crashes. A 50th percentile, male, Hybrid III dummy model was used to represent the driver.
Technical Paper

Stiff versus Yielding Seats: Analysis of Matched Rear Impact Tests

2007-04-16
2007-01-0708
The objective of this study was to analyze available anthropomorphic test device (ATD) responses from KARCO rear impact tests and to evaluate an injury predictive model based on crash severity and occupant weight presented by Saczalski et al. (2004). The KARCO tests were carried out with various seat designs. Biomechanical responses were evaluated in speed ranges of 7-12, 13-17, 18-23 and 24-34 mph. For this analysis, all tests with matching yielding and stiff seats and matching occupant size and weight were analyzed for cases without 2nd row occupant interaction. Overall, the test data shows that conventional yielding seats provide a high degree of safety for small to large adult occupants in rear crashes; this data is also consistent with good field performance as found in NASS-CDS. Saczalski et al.'s (2004) predictive model of occupant injury is not correct as there are numerous cases from NASS-CDS that show no or minor injury in the region where serious injury is predicted.
Technical Paper

Macroscopic Constitutive Behaviors of Aluminum Honeycombs Under Dynamic Inclined Loads

2007-04-16
2007-01-0979
Macroscopic constitutive behaviors of aluminum 5052-H38 honeycombs under dynamic inclined loads with respect to the out-of-plane direction are investigated by experiments. The results of the dynamic crush tests indicate that as the impact velocity increases, the normal crush strength increases and the shear strength remains nearly the same for a fixed ratio of the normal to shear displacement rate. The experimental results suggest that the macroscopic yield surface of the honeycomb specimens as a function of the impact velocity under the given dynamic inclined loads is not governed by the isotropic hardening rule of the classical plasticity theory. As the impact velocity increases, the shape of the macroscopic yield surface changes, or more specifically, the curvature of the yield surface increases near the pure compression state.
Technical Paper

The Effect of Occupant Size on Head Displacement in Frontal Collisions

2007-04-16
2007-01-1503
This paper builds on previous research on the development of a head displacement model for restrained occupants in frontal collisions. Physical and mathematical simulations were performed utilizing the 5th percentile female and 50th percentile male Hybrid III dummies to measure the effect of occupant size, seat belt system design and crash severity on resultant head displacement of occupants in frontal collisions. Sled and simulation accelerations ranged from 10 g to 20 g with delta-V's from 6.6 m/s to 10.0 m/s. Results indicate a difference between the 5th percentile female and 50th percentile male dummies. Preliminary assessment of head displacement as a function of occupant kinetic energy demonstrated good correlation.
Technical Paper

Biomechanical Analysis of Knee Impact in Frontal Collisions through Finite Element Simulations with a Full Human Body Model

2008-06-17
2008-01-1887
This study applies a detailed finite element model of the human body to simulate occupant knee impacts experienced in vehicular frontal crashes. The human body model includes detailed anatomical features of the head, neck, chest, thoracic and lumbar spine, abdomen, and lower and upper extremities. The material properties used in the model for each anatomic part of the human body were obtained from test data reported in the literature. The total human body model used in the current study has been previously validated in frontal and side impacts. Several cadaver knee impact tests representing occupants in a frontal impact condition were simulated using the previously validated human body model. Model impact responses in terms of force-time and acceleration-time histories were compared with test results. In addition, stress distributions of the patella, femur, and pelvis were reported for the simulated test conditions.
Technical Paper

Injury Mechanism of the Head and Face of Children in Side Impacts

2009-04-20
2009-01-1434
This study assessed the primary involved physical components attributed to the head and face injuries of child occupants seated directly adjacent to the stuck side of a vehicle in a side impact collision. The findings presented in this study were based upon analysis of the National Automotive Sampling System/Crashworthiness Data System (NASS/CDS) for the years 1993–2007. Injury analysis was conducted for those nearside child occupants aged between 1–12 years-old. The involved children were classified as toddler-type, booster-type, or belted-type occupants. These classifications were based upon the recommended restraint system for the occupant. Injury mechanisms were assessed for the child occupants in each of the three groups. A detailed study of NASS/CDS cases was conducted to provide a greater understanding of the associated injury mechanisms.
Technical Paper

Theoretical Evaluation of the Requirements of the 1999 Advanced Airbag SNPRM – Part One: Design Space Constraint Analysis

2001-03-05
2001-01-0165
In the 1999 Supplemental Notice for Proposed Rulemaking (SNPRM) for Advanced Airbags, the National Highway Traffic Safety Administration (NHTSA) sought comments on the maximum speed at which the high-speed, unbelted occupant test suite will be conducted, i.e., 48 kph vs. 40 kph. To help address this question, an analysis of constraints was performed via extensive mathematical modeling of a theoretical restraint system. First, math models (correlated with several existing physical tests) were used to predict the occupant responses associated with 336 different theoretical dual-stage driver airbag designs subjected to six specific Regulated and non-Regulated tests.
Technical Paper

A Theoretical, Risk Assessment Procedure for In-Position Drivers Involved in Full-Engagement Frontal Impacts

2003-03-03
2003-01-1354
A theoretical, mathematical, risk assessment procedure was developed to estimate the fraction of drivers that incurred head and thoracic AIS3+ injuries in full-engagement frontal crashes. The estimates were based on numerical simulations of various real-world events, including variations of crash severity, crash speed, level of restraint, and occupant size. The procedure consisted of four steps: (1) conduct the simulations of the numerous events, (2) use biomechanical equations to transform the occupant responses into AIS3+ risks for each event, (3) weight the maximum risk for each event by its real-world event frequency, and (4) sum the weighted risks. To validate the risk assessment procedure, numerous steps were taken. First, a passenger car was identified to represent average field performance.
Technical Paper

Comparative Evaluation of Various Frontal Impact Test Procedures

1995-02-01
950646
The result of two series of crash tests, 5 tests each series, are presented in this paper. Two car designs were subjected to various frontal impacts - full frontal, car-to-car 60% offset, 50% offset, and 50% offset with deformable barrier - at 56 km/h. Two tests were conducted at 60 km/h against the ECE deformable barrier with 40% overlap. Structural and occupant responses are compared between the various test conditions.
Technical Paper

Head Injury Potential Assessment in Frontal Impacts by Mathematical Modeling

1994-11-01
942212
The potential of head injury in frontal barrier impact tests was investigated by a mathematical model which consisted of a finite element human head model, a four segments rigid dynamic neck model, a rigid body occupant model, and a lumped-mass vehicle structure model. The finite element human head model represents anatomically an average adult head. The rigid body occupant model simulates an average adult male. The structure model simulates the interior space and the dynamic characteristics of a vehicle. The neck model integrates the finite element human head to the occupant body to give a more realistic kinematic head motion in a barrier crash test. Model responses were compared with experimental cadaveric data and vehicle crash data for the purpose of model validation to ensure model accuracy. Model results show a good agreement with those of the tests.
Technical Paper

Finite Element Modeling of Structural Foam and Head Impact Interaction with Vehicle Upper Interior

1995-02-01
950885
This paper first describes an experimental analytical approach and numerical procedures used to establish crushable foam material constants needed in finite element (FE) analysis. Dynamic compressive stress-strain data of a 2 pcf Dytherm foam, provided by ARCO Chemical, is used to determine the material parameters which appears in the foam constitutive equation. A finite element model simulating a 15 mph spherical headform impact with a foam sample 6 in. x 6 in. x 1 in. fixed against a rigid plate is developed. The predicted force-deflection characteristic is validated against test data to characterize the initial loading and final unloading stiffnesses of the foam during impact. Finite element modeling and analysis of 15 mph spherical headform impact with component sections of upper interior structures of a passenger compartment is presented.
Technical Paper

Variability of Hybrid III Clearance Dimensions within the FMVSS 208 and NCAP Vehicle Test Fleets and the Effects of Clearance Dimensions on Dummy Impact Responses

1995-11-01
952710
Locations of key body segments of Hybrid III dummies used in FMVSS 208 compliance tests and NCAP tests were measured and subjected to statistical analysis. Mean clearance dimensions and their standard deviations for selected body segments of driver and passenger occupants with respect to selected vehicle surfaces were determined for several classes of vehicles. These occupant locations were then investigated for correlation with impact responses measured in crash tests and by using a three dimensional human-dummy mathematical model in comparable settings. Based on these data, the importance of some of the clearance dimensions between the dummy and the vehicle surfaces was determined. The study also compares observed Hybrid III dummy positions within selected vehicles with real world occupant positions reported in published literature.
Technical Paper

Finite Element Modeling and Development of the Deformable Featureless Headform and Its Application to Vehicle Interior Head Impact Testing

1996-02-01
960104
This paper describes the steps and procedures involved in the development, calibration, and validation of a finite element model of a deformable featureless headform (Hybrid III head without nose). Development efforts included: a headform scan to verify geometric accuracy, quantification of general-purpose construction of the finite element model from the scanned data, viscoelastic parameters for the constitutive model definition of the headform skin, and models of drop tests with impact speeds of 9.775, 14.484, 19.312, and 24.140 km/h (6.074, 9, 12, and 15 mph). The predictions of all pertinent headform responses during the calibration were in excellent agreement with related experiments. The validity of the headform model and the headform impact methodology were verified in both component and full vehicle environments. This was accomplished through comparisons of finite element simulations with tests of the headform responses at 24.140 km/h (15 mph) impact.
Technical Paper

Dynamic Axial Tolerance of the Human Foot-Ankle Complex

1996-11-01
962426
Axial loading of the calcaneus-talus-tibia complex is an important injury mechanism for moderate and severe vehicular foot-ankle trauma. To develop a more definitive and quantitative relationship between biomechanical parameters such as specimen age, axial force, and injury, dynamic axial impact tests to isolated lower legs were conducted at the Medical College of Wisconsin (MCW). Twenty-six intact adult lower legs excised from unembalmed human cadavers were tested under dynamic loading using a mini-sled pendulum device. The specimens were prepared, pretest radiographs were taken, and input impact and output forces together with the pathology were obtained using load cell data. Input impact forces always exceeded the forces recorded at the distal end of the preparation. The fracture forces ranged from 4.3 to 11.4 kN.
Technical Paper

Proposed Provisional Reference Values for the Humerus for Evaluation of Injury Potential

1996-11-01
962416
A humerus provisional reference value (PRV) based on human surrogate data was developed to help evaluate upper arm injury potential. The proposed PRV is based on humerus bone bending moments generated by testing pairs of cadaver arms to fracture in three-point bending on an Instron testing machine in either lateral-medial (L-M) or anterior-posterior (A-P) loading, at 218 mm/s and 0.635 mm/s loading rates. The results were then normalized and scaled to 50th and 5th percentile sized occupants. The normalized average L-M bending moment at failure test result was 6 percent more than the normalized average A-P bending moment. The normalized average L-M shear force at failure was 23 percent higher than the normalized average A-P shear force. The faster rate of loading resulted in a higher average bending moment overall - 8 percent in the L-M and 14 percent in the A-P loading directions.
X