Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Biomechanical Investigation of Airbag-Induced Upper-Extremity Injuries

1997-11-12
973325
The factors that influence airbag-induced upper-extremity injuries sustained by drivers were investigated in this study. Seven unembalmed human cadavers were used in nineteen direct-forearm-interaction static deployments. A single horizontal-tear-seam airbag module and two different inflators were used. Spacing between the instrumented forearm and the airbag module was varied from 10 cm to direct contact in some tests. Forearm-bone instrumentation included triaxial accelerometry, crack detection gages, and film targets. Internal airbag pressure was also measured. The observed injuries were largely transverse, oblique, and wedge fractures of the ulna or radius, or both, similar to those reported in field investigations. Tears of the elbow joint capsule were also found, both with and without fracture of the forearm.
Technical Paper

Development of an Improved Driver Eye Position Model

1998-02-23
980012
SAE Recommended Practice J941 describes the eyellipse, a statistical representation of driver eye locations, that is used to facilitate design decisions regarding vehicle interiors, including the display locations, mirror placement, and headspace requirements. Eye-position data collected recently at University of Michigan Transportation Research Institute (UMTRI) suggest that the SAE J941 practice could be improved. SAE J941 currently uses the SgRP location, seat-track travel (L23), and design seatback angle (L40) as inputs to the eyellipse model. However, UMTRI data show that the characteristics of empirical eyellipses can be predicted more accurately using seat height, steering-wheel position, and seat-track rise. A series of UMTRI studies collected eye-location data from groups of 50 to 120 drivers with statures spanning over 97 percent of the U.S. population. Data were collected in thirty-three vehicles that represent a wide range of vehicle geometry.
Technical Paper

Comparison of Airbag-Aggressivity Predictors in Relation to Forearm Fractures

1998-02-23
980856
Four unembalmed human cadavers were used in eight direct-forearm-airbag-interaction static deployments to assess the relative aggressivity of two different airbag modules. Instrumentation of the forearm bones included triaxial accelerometry, crack detection gages, and film targets. The forearm-fracture predictors, peak and average distal forearm speed (PDFS and ADFS), were evaluated and compared to the incidence of transverse, oblique, and wedge fractures of the radius and ulna. Internal-airbag pressure and axial column loads were also measured. The results of this study support the use of PDFS or ADFS for the prediction of airbag-induced upper-extremity fractures. The results also suggest that there is no direct relationship between internal-airbag pressure and forearm fracture. The less-aggressive system (LAS) examined in this study produced half the number of forearm fracture as the more-aggressive system (MAS), yet exhibited a more aggressive internal-pressure performance.
Technical Paper

Development of a Two-Dimensional Driver Side Airbag Deployment Algorithm

1990-10-01
902323
A PC based interactive program was developed to simulate the unfolding and deploying process of a driver side airbag in the sagittal plane. The airbag was represented by a series of nodes. The maximum allowable stretch was less or equal to one between any two nodes. We assumed that the airbag unfolding was pivoted about folded points. After the completion of the unfolding process the airbag would begin to deploy. During the deploying process, two parameters were used to determine the nodal priority of the inflation. The first parameter was the distance between the instantaneous and final positions of a node. Nodes with longer distances to travel will have to move faster. We also considered the distance between the current nodal position and the gas inlet location. For a node closer to the gas inlet, we assumed that the deploying speed was faster. A graphical procedure was used to calculate the area of the airbag.
Technical Paper

Mechanical Properties of the Cadaveric and Hybrid III Lumbar Spines

1998-11-02
983160
This study identified the mechanical properties of ten cadaveric lumbar spines and two Hybrid III lumbar spines. Eight tests were performed on each specimen: tension, compression, anterior shear, posterior shear, left lateral shear, flexion, extension and left lateral bending. Each test was run at a displacement rate of 100 mm/sec. The maximum displacements were selected to approximate the loading range of a 50 km/h Hybrid III dummy sled test and to be non-destructive to the specimens. Load, linear displacement and angular displacement data were collected. Bending moment was calculated from force data. Each mode of loading demonstrated consistent characteristics. The load-displacement curves of the Hybrid III lumbar spine demonstrated an initial region of high stiffness followed by a region of constant stiffness.
Technical Paper

Development of a Finite Element Model of the Human Neck

1998-11-02
983157
A three-dimensional finite element model of a human neck has been developed in an effort to study the mechanics of cervical spine while subjected to impacts. The neck geometry was obtained from MRI scans of a 50th percentile male volunteer. This model, consisting of the vertebrae from C1 through T1 including the intervertebral discs and posterior elements, was constructed primarily of 8-node brick elements. The vertebrae were modeled using linear elastic-plastic materials, while the intervertebral discs were modeled using linear viscoelastic materials. Sliding interfaces were defined to simulate the motion of synovial facet joints. Anterior and posterior longitudinal ligaments, facet joint capsular ligaments, alar ligaments, transverse ligaments, and anterior and posterior atlanto-occipital membranes were modeled as nonlinear bar elements or as tension-only membrane elements. A previously developed head and brain model was also incorporated.
Technical Paper

Improved ATD Positioning Procedures

2001-03-05
2001-01-0117
Current anthropomorphic test device (ATD) positioning procedures for drivers and front-seat passengers place the crash dummy within the vehicle by reference to the seat track. Midsize-male ATDs are placed at the center of the fore-aft seat track adjustment range, while small-female and large-male ATDs are placed at the front and rear of the seat track, respectively. Research on occupant positioning at UMTRI led to the development of a new ATD positioning procedure that places the ATDs at positions more representative of the driving positions of people who match the ATD's body dimensions. This paper presents a revised version of the UMTRI ATD positioning procedure. The changes to the procedure improve the ease and repeatability of ATD positioning while preserving the accuracy of the resulting ATD positions with respect to the driving positions of people matching the ATD anthropometry.
Technical Paper

Development of Performance Specifications for the Occupant Classification Anthropomorphic Test Device (Ocatd)

2001-06-04
2001-06-0063
Advanced airbag systems use a variety of sensors to classify vehicle occupants so that the airbag deployment can be modulated accordingly. One potential input to such systems is the distribution of pressure applied to the seat surface by the occupant. However, the development of such systems is hindered by the lack of suitable human surrogates. The OCATD program has developed two new surrogates for advanced airbag applications representing a small adult woman and a six-year-old child. This paper describes the development of performance specifications for the OCATDs based on a study of the seat surface pressure distributions produced by vehicle occupants. The pressure distributions of sixty-eight small women and children ranging in body weight between 23 and 48 kg were measured on four seats in up to twelve postures per seat. The data were analyzed to determine the parameters of the pressure distribution that best predict occupant body weight.
Technical Paper

A tibial mid-shaft injury mechanism in frontal automotive crashes

2001-06-04
2001-06-0241
Lower extremity injuries in frontal automotive crashes usually occur with footwell intrusion where both the knee and foot are constrained. In order to identify factors associated with tibial shaft injury, a series of numerical simulations were conducted using a finite element model of the whole human body. These simulations demonstrated that tibial mid-shaft injuries in frontal crashes could be caused by an abrupt change in velocity and a high rate of footwell intrusion.
Technical Paper

Mathematical Modeling of the Hybrid III Dummy Chest with Chest Foam

1991-10-01
912892
A nonlinear foam was added to a previously created three-dimensional finite element model of the Hybrid III dummy chest which consisted of six steel ribs, rib damping material, the sternum, a spine box and a pendulum. Two standard calibration pendulum impact tests for a Hybrid III dummy chest were used to validate the new model. An explicit finite element analysis code PAM-CRASH was utilized to simulate the dynamic process. At impact velocities of 6.7 m/s and 4.3 m/s, the force and deflection time history as well as the force-deflection plots showed good agreement between model predictions and calibration data. Peak strains also agreed well with experimental data.
Technical Paper

Aortic Mechanics in High-Speed Racing Crashes

2012-04-16
2012-01-0101
Auto racing has been in vogue from the time automobiles were first built. With the dawn of modern cars came higher engine capacities; the speeds involved in these races and crashes increased as well. However, the advent of passive restraint systems such as the helmet, HANS (Head and Neck Support device), multi-point harness system, roll cage, side and frontal crush zones, racing seats, fire retardant suits, and soft-wall technology, have greatly improved the survivability of the drivers in high-speed racing crashes. Three left lateral crashes from Begeman and Melvin (2002), Case #LAS12, #IND14 and #99TX were used as inputs to the Wayne State Human Body Model (WSHBM) in a simulated racing buck. Twelve simulations with delta-v, six-point harness and shoulder pad as design variables were analyzed for the average maximum principal strain (AMPS) in the aorta. The average AMPS for the high-speed crashes were 0.1551±0.0172 while the average maximum pressure was 110.50±4.25 kPa.
Technical Paper

Safety Restraint System Physical Evidence and Biomechanical Injury Potential Due to Belt Entanglement

2006-04-03
2006-01-1670
For more than 20 years, field research and laboratory testing has consistently demonstrated that wearing a seat belt dramatically reduces the risk of occupant death or serious injury in motor vehicle crashes [1, 2]. The injury prevention benefits of seat belts require that they remain fastened during collisions. Federal Motor Vehicle Safety Standards set forth seat belt buckle performance requirements to address buckle performance in accident conditions. However, several theories of buckle release or separation exist including: false latch, inadvertent release, and inertial release. Forensic investigations of vehicle crashes would benefit with diagnostic criteria which could distinguish between a buckle separation, a properly restrained occupant, and an unused or stowed seat belt. In the unlikely event of buckle separation, entanglement with the webbing would be expected if the occupant moves substantially as a result of the crash forces.
Technical Paper

An Improved Seating Accommodation Model with Application to Different User Populations

1998-02-23
980651
A new approach to driver seat-position modeling is presented. The equations of the Seating Accommodation Model (SAM) separately predict parameters of the distributions of male and female fore/aft seat position in a given vehicle. These distributions are used together to predict specific percentiles of the combined male-and-female seat-position distribution. The effects of vehicle parameters-seat height, steering-wheel-to-accelerator pedal distance, seat-cushion angle, and transmission type-are reflected in the prediction of mean seat position. The mean and standard deviation of driver population stature are included in the prediction for the mean and standard deviation of the seat-position distribution, respectively. SAM represents a new, more flexible approach to predicting fore/aft seat-position distributions for any driver population in passenger vehicles. Model performance is good, even at percentiles in the tails of the distribution.
Technical Paper

Investigation of Airbag-Induced Skin Abrasions

1992-11-01
922510
Static deployments of driver-side airbags into the legs of human subjects were used to investigate the effects of inflator capacity, internal airbag tethering, airbag fabric, and the distance from the module on airbag-induced skin abrasion. Abrasion mechanisms were described by measurements of airbag fabric velocity and target surface pressure. Airbag fabric kinematics resulting in three distinct abrasion patterns were identified. For all cases, abrasions were found to be caused primarily by high-velocity fabric impactrather than scraping associated with lateral fabric motion. Use of higher-capacity inflators increased abrasion severity, and untethered airbags produced more severe abrasions than tethered airbags at distances greater than the length of the tether. Abrasion severity decreased as the distance increased from 225 to 450 mm. Use of a finer-weave airbag fabric in place of a coarser-weave fabric did not decrease the severity of abrasion.
Technical Paper

Development of an Advanced ATD Thorax System for Improved Injury Assessment in Frontal Crash Environments

1992-11-01
922520
Injuries to the thorax and abdomen comprise a significant percentage of all occupant injuries in motor vehicle accidents. While the percentage of internal chest injuries is reduced for restrained front-seat occupants in frontal crashes, serious skeletal chest injuries and abdominal injuries can still result from interaction with steering wheels and restraint systems. This paper describes the design and performance of prototype components for the chest, abdomen, spine, and shoulders of the Hybrid III dummy that are under development to improve the capability of the Hybrid III frontal crash dummy with regard to restraint-system interaction and injury-sensing capability.
Technical Paper

Finite Element Modeling of Hybrid III Head-Neck Complex

1992-11-01
922526
A three-dimensional finite element model of the Hybrid III dummy head-neck complex was created to simulate the Amended Part 572 Head-Neck Pendulum Compliance Test, of the Code of Federal Regulations. The model consisted of a rigid head and five circular aluminum disks joined together by butyl elastomer rubber. Contact surfaces were defined to allow the anterior neck to separate upon an application of extension moments. Two mounting positions, one for flexion and the other one for extension, were used to simulate the head-neck calibration tests. An explicit finite element code PAM-CRASH was utilized to simulate the model dynamic responses. Simulation results were compared to experimental data obtained from First Technology Safety Systems Inc. Model predictions agreed well in both flexion and extension. This model can be used to study the head-neck biomechanics of the existing dummy as well as in the development of new dummies.
Technical Paper

A Laboratory Technique for Assessing the Skin Abrasion Potential of Airbags

1993-03-01
930644
In recent investigations of airbag deployments, drivers h v c reported abrasions to the face, neck, and forearms due to deploying airbags, A study of the airbag design and deployments parameters affecting the incidence and severity of abrasions caused by driver-side airbags has led to the development of a laboratory test procedure to evaluate the potential of an airbag design m cause skin injury This report describes the procedure, which is based an static deployments of airbags into a cylindrical lest fixture. The target area is covered with a material that responds to abrasion-producing events in a manner related to human skin tolerance. Test results show excellent correlation with abrasion injuries produced by airbag deployments into the skin of human volunteers.
Technical Paper

Knee, Thigh and Hip Injury Patterns for Drivers and Right Front Passengers in Frontal Impacts

2003-03-03
2003-01-0164
Late model passenger cars and light trucks incorporate occupant protection systems with airbags and knee restraints. Knee restraints have been designed principally to meet the unbelted portions of FMVSS 208 that require femur load limits of 10-kN to be met in barrier crashes up to 30 mph, +/- 30 degrees utilizing the 50% male Anthropomorphic Test Device (ATD). In addition, knee restraints provide additional lower-torso restraint for belt-restrained occupants in higher-severity crashes. An analysis of frontal crashes in the University of Michigan Crash Injury Research and Engineering Network (UM CIREN) database was performed to determine the influence of vehicle, crash and occupant parameters on knee, thigh, and hip injuries. The data sample consists of drivers and right front passengers involved in frontal crashes who sustained significant injuries (Abbreviated Injury Scale [AIS] ≥ 3 or two or more AIS ≥ 2) to any body region.
Technical Paper

Evaluation of the SAE J826 3-D Manikin Measures of Driver Positioning and Posture

1994-03-01
941048
This study was initiated to evaluate the performance of the SAE J826 3-D manikin in seats that span a range of cushion firmness and contour levels. The manikin measures of H-point location, seatback angle, and seatpan angle (measured using a modified-manikin procedure) are compared with the human measures of hip-joint-center (HJC) location, torso angle, and thigh angle for forty drivers. The results indicate that the manikin H-point provides a reasonably consistent, though somewhat offset, measure of driver HJC location for the range of seats tested. This study found that seats with the same manikin-measured seatback angle produce different occupant torso angles. The data also suggest that for a given vehicle seat, the manikin-measured seatback angle can be used to predict the change in torso angle produced by adjusting the seatback inclination.
Technical Paper

Laboratory Investigations and Mathematical Modeling of Airbag-Induced Skin Burns

1994-11-01
942217
Although driver-side airbag systems provide protection against serious head and chest injuries in frontal impacts, injuries produced by the airbag itself have also been reported. Most of these injuries are relatively minor, and consist primarily of skin abrasions and burns. Previous investigations have addressed the mechanisms of airbag-induced skin abrasion. In the current research, laboratory studies related to the potential for thermal burns due to high-temperature airbag exhaust gas were conducted. A laboratory apparatus was constructed to produce a 10-mm-diameter jet of hot air that was directed onto the leg skin of human volunteers in time-controlled pulses. Skin burns were produced in 70 of 183 exposures conducted using air temperatures ranging from 350 to 550°C, air velocities from 50 to 90 m/s, and exposure durations from 50 to 300 ms.
X