Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Analysis of the Correlation Between Engine-Out Particulates and Local Φ in the Lift-Off Region of a Heavy Duty Diesel Engine Using Raman Spectroscopy

2009-04-20
2009-01-1357
The local equivalence ratio, Φ, was measured in fuel jets using laser-induced spontaneous Raman scattering in an optical heavy duty diesel engine. The measurements were performed at 1200 rpm and quarter load (6 bar IMEP). The objective was to study factors influencing soot formation, such as gas entrainment and lift-off position, and to find correlations with engine-out particulate matter (PM) levels. The effects of nozzle hole size, injection pressure, inlet oxygen concentration, and ambient density at TDC were studied. The position of the lift–off region was determined from OH chemiluminescence images of the flame. The liquid penetration length was measured with Mie scattering to ensure that the Raman measurement was performed in the gaseous part of the spray. The local Φ value was successfully measured inside a fuel jet. A surprisingly low correlation coefficient between engine-out PM and the local Φ in the reaction zone were observed.
Journal Article

Analysis of EGR Effects on the Soot Distribution in a Heavy Duty Diesel Engine using Time-Resolved Laser Induced Incandescence

2010-10-25
2010-01-2104
The soot distribution as function of ambient O₂ mole fraction in a heavy-duty diesel engine was investigated at low load (6 bar IMEP) with laser-induced incandescence (LII) and natural luminosity. A Multi-YAG laser system was utilized to create time-resolved LII using 8 laser pulses with a spacing of one CAD with detection on an 8-chip framing camera. It is well known that the engine-out smoke level increases with decreasing oxygen fraction up to a certain level where it starts to decrease again. For the studied case the peak occurred at an O₂ fraction of 11.4%. When the oxygen fraction was decreased successively from 21% to 9%, the initial soot formation moved downstream in the jet. At the lower oxygen fractions, below 12%, no soot was formed until after the wall interaction. At oxygen fractions below 11% the first evidence of soot is in the recirculation zone between two adjacent jets.
Journal Article

Challenges for In-Cylinder High-Speed Two-Dimensional Laser-Induced Incandescence Measurements of Soot

2011-04-12
2011-01-1280
Laser-Induced Incandescence (LII) has traditionally been considered a straightforward and reliable optical diagnostic technique for in-cylinder soot measurements. As a result, it is nowadays even possible to buy turn-key LII measurement systems. During recent years, however, attention has been drawn to a number of unresolved challenges with LII. Many of these are relevant mostly for particle sizing using time-resolved LII, but also two-dimensional soot volume fraction measurements are affected, especially in regions with high soot concentrations typically found in combustion engines. In this work the focus is on the specific challenges involved in performing high-repetition rate measurements with LII in diesel engines. All the mentioned issues might not be possible to overcome but they should nevertheless be known and their potential impact should be considered.
Technical Paper

Development of a Two-Dimensional Driver Side Airbag Deployment Algorithm

1990-10-01
902323
A PC based interactive program was developed to simulate the unfolding and deploying process of a driver side airbag in the sagittal plane. The airbag was represented by a series of nodes. The maximum allowable stretch was less or equal to one between any two nodes. We assumed that the airbag unfolding was pivoted about folded points. After the completion of the unfolding process the airbag would begin to deploy. During the deploying process, two parameters were used to determine the nodal priority of the inflation. The first parameter was the distance between the instantaneous and final positions of a node. Nodes with longer distances to travel will have to move faster. We also considered the distance between the current nodal position and the gas inlet location. For a node closer to the gas inlet, we assumed that the deploying speed was faster. A graphical procedure was used to calculate the area of the airbag.
Technical Paper

Mechanical Properties of the Cadaveric and Hybrid III Lumbar Spines

1998-11-02
983160
This study identified the mechanical properties of ten cadaveric lumbar spines and two Hybrid III lumbar spines. Eight tests were performed on each specimen: tension, compression, anterior shear, posterior shear, left lateral shear, flexion, extension and left lateral bending. Each test was run at a displacement rate of 100 mm/sec. The maximum displacements were selected to approximate the loading range of a 50 km/h Hybrid III dummy sled test and to be non-destructive to the specimens. Load, linear displacement and angular displacement data were collected. Bending moment was calculated from force data. Each mode of loading demonstrated consistent characteristics. The load-displacement curves of the Hybrid III lumbar spine demonstrated an initial region of high stiffness followed by a region of constant stiffness.
Technical Paper

Development of a Finite Element Model of the Human Neck

1998-11-02
983157
A three-dimensional finite element model of a human neck has been developed in an effort to study the mechanics of cervical spine while subjected to impacts. The neck geometry was obtained from MRI scans of a 50th percentile male volunteer. This model, consisting of the vertebrae from C1 through T1 including the intervertebral discs and posterior elements, was constructed primarily of 8-node brick elements. The vertebrae were modeled using linear elastic-plastic materials, while the intervertebral discs were modeled using linear viscoelastic materials. Sliding interfaces were defined to simulate the motion of synovial facet joints. Anterior and posterior longitudinal ligaments, facet joint capsular ligaments, alar ligaments, transverse ligaments, and anterior and posterior atlanto-occipital membranes were modeled as nonlinear bar elements or as tension-only membrane elements. A previously developed head and brain model was also incorporated.
Technical Paper

Two-Dimensional Temperature Measurements in Diesel Piston Bowl Using Phosphor Thermometry

2009-09-13
2009-24-0033
Phosphor thermometry was used during fuel injection in an optical engine with the glass piston of reentrant type. SiO2 coated phosphor particle was used for the gas-phase temperature measurements, which gave much less background signal. The measurements were performed in motored mode, in combustion mode with injection of n-heptane and in non-combustion mode with injection of iso-octane. In the beginning of injection period, the mean temperature of each injection cases was lower than that of the motored case, and temperature of iso-octane injection cases was even lower than that of n-heptane injection cases. This indicates, even if vaporization effect seemed to be the same at both injection cases, the effect of temperature decrease changed due to the chemical reaction effect for the n-heptane cases. Chemical reaction seems to be initiated outside of the fuel liquid spray and the position was moving towards the fuel rich area as the time proceeds.
Technical Paper

A tibial mid-shaft injury mechanism in frontal automotive crashes

2001-06-04
2001-06-0241
Lower extremity injuries in frontal automotive crashes usually occur with footwell intrusion where both the knee and foot are constrained. In order to identify factors associated with tibial shaft injury, a series of numerical simulations were conducted using a finite element model of the whole human body. These simulations demonstrated that tibial mid-shaft injuries in frontal crashes could be caused by an abrupt change in velocity and a high rate of footwell intrusion.
Technical Paper

Mathematical Modeling of the Hybrid III Dummy Chest with Chest Foam

1991-10-01
912892
A nonlinear foam was added to a previously created three-dimensional finite element model of the Hybrid III dummy chest which consisted of six steel ribs, rib damping material, the sternum, a spine box and a pendulum. Two standard calibration pendulum impact tests for a Hybrid III dummy chest were used to validate the new model. An explicit finite element analysis code PAM-CRASH was utilized to simulate the dynamic process. At impact velocities of 6.7 m/s and 4.3 m/s, the force and deflection time history as well as the force-deflection plots showed good agreement between model predictions and calibration data. Peak strains also agreed well with experimental data.
Technical Paper

Comparison of Laser-Extinction and Natural Luminosity Measurements for Soot Probing in Diesel Optical Engines

2016-10-17
2016-01-2159
Soot emissions from diesel internal combustion engines are strictly regulated nowadays. Laser extinction measurement (LEM) and natural luminosity (NL) of sooty flames are commonly applied to study soot. LEM measures soot along the laser beam path and it can probe soot regardless of temperature. NL integrates the whole field of view and relies on soot temperature. In this work, a comparison of simultaneously recorded LEM and NL data has been performed in a heavy-duty optical engine. A 685 nm laser beam is used for LEM. The laser was modulated at 63 kHz, which facilitated subtraction of the background NL signal from the raw LEM data. By Beer-Lambert’s law, KL factor can be calculated and used as a metric to describe soot measurements. A compensation of transmitted laser intensity fluctuation and soot deposits on optical windows has been performed in this work.
Technical Paper

Effects of Post-Injections Strategies on UHC and CO at Gasoline PPC Conditions in a Heavy-Duty Optical Engine

2017-03-28
2017-01-0753
Gasoline partially premixed combustion (PPC) has shown potential in terms of high efficiency with low emissions of oxides of nitrogen (NOx) and soot. Despite these benefits, emissions of unburned hydrocarbons (UHC) and carbon monoxide (CO) are the main shortcomings of the concept. These are caused, among other things, by overlean zones near the injector tip and injector dribble. Previous diesel low temperature combustion (LTC) research has demonstrated post injections to be an effective strategy to mitigate these emissions. The main objective of this work is to investigate the impact of post injections on CO and UHC emissions in a quiescent (non-swirling) combustion system. A blend of primary reference fuels, PRF87, having properties similar to US pump gasoline was used at PPC conditions in a heavy duty optical engine. The start of the main injection was maintained constant. Dwell and mass repartition between the main and post injections were varied to evaluate their effect.
Technical Paper

Aortic Mechanics in High-Speed Racing Crashes

2012-04-16
2012-01-0101
Auto racing has been in vogue from the time automobiles were first built. With the dawn of modern cars came higher engine capacities; the speeds involved in these races and crashes increased as well. However, the advent of passive restraint systems such as the helmet, HANS (Head and Neck Support device), multi-point harness system, roll cage, side and frontal crush zones, racing seats, fire retardant suits, and soft-wall technology, have greatly improved the survivability of the drivers in high-speed racing crashes. Three left lateral crashes from Begeman and Melvin (2002), Case #LAS12, #IND14 and #99TX were used as inputs to the Wayne State Human Body Model (WSHBM) in a simulated racing buck. Twelve simulations with delta-v, six-point harness and shoulder pad as design variables were analyzed for the average maximum principal strain (AMPS) in the aorta. The average AMPS for the high-speed crashes were 0.1551±0.0172 while the average maximum pressure was 110.50±4.25 kPa.
Technical Paper

Finite Element Modeling of Hybrid III Head-Neck Complex

1992-11-01
922526
A three-dimensional finite element model of the Hybrid III dummy head-neck complex was created to simulate the Amended Part 572 Head-Neck Pendulum Compliance Test, of the Code of Federal Regulations. The model consisted of a rigid head and five circular aluminum disks joined together by butyl elastomer rubber. Contact surfaces were defined to allow the anterior neck to separate upon an application of extension moments. Two mounting positions, one for flexion and the other one for extension, were used to simulate the head-neck calibration tests. An explicit finite element code PAM-CRASH was utilized to simulate the model dynamic responses. Simulation results were compared to experimental data obtained from First Technology Safety Systems Inc. Model predictions agreed well in both flexion and extension. This model can be used to study the head-neck biomechanics of the existing dummy as well as in the development of new dummies.
Technical Paper

On the Role of Cervical Facet Joints in Rear End Impact Neck Injury Mechanisms

1997-02-24
970497
After a rear end impact, various clinical symptoms are often seen in car occupants (e.g. neck stiffness, strain, headache). Although many different injury mechanisms of the cervical spine have been identified thus far, the extent to which a single mechanism of injury is responsible remains uncertain. Apart from hyperextension or excessive shearing, a compression of the cervical spine can also be seen in the first phase of the impact due to ramping or other mechanical interactions between the seat back and the spine. It is hypothesized that this axial compression, together with the shear force, are responsible for the higher observed frequency of neck injuries in rear end impacts versus frontal impacts of comparable severity. The axial compression first causes loosening of cervical ligaments making it easier for shear type soft tissue injuries to occur.
Technical Paper

Experimental and Analytical Study of Knee Fracture Mechanisms in a Frontal Knee Impact

1996-11-01
962423
The mechanisms of knee fracture were studied experimentally using cadaveric knees and analytically by computer simulation. Ten 90 degree flexed knees were impacted frontally by a 20 kg pendulum with a rigid surface, a 450 psi (3.103 MPa) crush strength and a 100 psi (0.689 MPa) crush strength aluminum honeycomb padding and a 50 psi (0.345 MPa) crush strength paper honeycomb padding at a velocity of about five m/s. During rigid surface impact, a patella fracture and a split condylar fracture were observed. The split condylar fracture was generated by the patella pushing the condyles apart, based on a finite element model using the maximum principal stress as the injury criterion. In the case of the 450 psi aluminum honeycomb padding, the split condylar fracture still occurred, but no patella fractures were observed because the honeycomb provided a more uniform distribution of patella load. No bony fractures in the knee area occurred for impacts with a 50 psi paper honeycomb padding.
Technical Paper

Experimental Validation of Pediatric Thorax Finite Element Model under Dynamic Loading Condition and Analysis of Injury

2013-04-08
2013-01-0456
Previously, a 10-year-old (YO) pediatric thorax finite element model (FEM) was developed and verified against child chest stiffness data measured from clinical cardiopulmonary resuscitation (CPR). However, the CPR experiments were performed at relatively low speeds, with a maximum loading rate of 250 mm/s. Studies showed that the biomechanical responses of human thorax exhibited rate sensitive characteristics. As such, the studies of dynamic responses of the pediatric thorax FEM are needed. Experimental pediatric cadaver data in frontal pendulum impacts and diagonal belt dynamic loading tests were used for dynamic validation. Thoracic force-deflection curves between test and simulation were compared. Strains predicted by the FEM and the injuries observed in the cadaver tests were also compared for injury assessment and analysis. This study helped to further improve the 10 YO pediatric thorax FEM.
Technical Paper

Combustion Chamber Wall Temperature Measurement and Modeling During Transient HCCI Operation

2005-10-24
2005-01-3731
In this paper the combustion chamber wall temperature was measured by the use of thermographic phosphor. The temperature was monitored over a large time window covering a load transient. Wall temperature measurement provide helpful information in all engines. This temperature is for example needed when calculating heat losses to the walls. Most important is however the effect of the wall temperature on combustion. The walls can not heat up instantaneously and the slowly increasing wall temperature following a load transient will affect the combustion events sucseeding the transient. The HCCI combustion process is, due to its dependence on chemical kinetics more sensitive to wall temperature than Otto or Diesel engines. In depth knowledge about transient wall temperature could increase the understanding of transient HCCI control. A “black box” state space model was derived which is useful when predicting transient wall temperature.
Technical Paper

Simultaneous PLIF Measurements for Visualization of Formaldehyde- and Fuel- Distributions in a DI HCCI Engine

2005-10-24
2005-01-3869
Simultaneous laser induced fluorescence (LIF) imaging of formaldehyde and a fuel-tracer have been performed in a direct-injection HCCI engine. A mix of N-heptane and iso-octane was used as fuel and Toluene as fluorescent tracer. The experimental setup involves two pulsed Nd:YAG lasers and two ICCD cameras. Frequency quadrupled laser radiation at 266 nm from one of the Nd:YAG lasers was used for excitation of the fuel tracer. The resulting fluorescence was detected with one of the ICCD cameras in the spectral region 270-320 nm. The second laser system provided frequency tripled radiation at 355 nm for excitation of Formaldehyde. Detection in the range 395-500 nm was achieved with the second ICCD. The aim of the presented work is to investigate the applicability of utilizing formaldehyde as a naturally occurring fuel marker. Formaldehyde is formed in the low temperature reactions (LTR) prior to the main combustion and should thus be present were fuel is located until it is consumed.
Technical Paper

Analysis of a Real-World Crash Using Finite Element Modeling to Examine Traumatic Rupture of the Aorta

2005-04-11
2005-01-1293
One of the leading causes of death in automotive crashes is traumatic rupture of the aorta (TRA) or blunt aortic injury (BAI). The risk of fatality is high if an aortic injury is not detected and treated promptly. The objective of this study is to investigate TRA mechanisms using finite element (FE) simulations of reconstructed real-world accidents involving aortic injury. For this application, a case was obtained from the William Lehman Injury Research Center (WLIRC), which is a Crash Injury Research and Engineering Network (CIREN) center. In this selected crash, the case vehicle was struck on the left side with a Principal Direction of Force (PDoF) of 290 degrees. The side structure of the case vehicle crushed a maximum of 0.33 m. The total delta-V was estimated to be 6.2 m/s. The occupant, a 62-year old mid-sized male, was fatally injured. The occupant sustained multiple rib fractures, laceration of the right ventricle, and TRA, among other injuries.
Technical Paper

Optical Diagnostics of HCCI and Low-Temperature Diesel Using Simultaneous 2-D PLIF of OH and Formaldehyde

2004-10-25
2004-01-2949
Simultaneous OH- and formaldehyde planar-LIF measurements have been performed in an optical engine using two laser sources working on 283 and 355 nm, respectively. The engine used for the measurements was a car Diesel engine converted to single-cylinder operation and modified for optical access. The fuel, n-heptane, was injected by a direct injection common rail system and the engine was also fitted with an EGR system. The engine was operated in both HCCI mode and Diesel mode. Due to the low load, the Diesel mode resulted in low-temperature Diesel combustion and because of limitations in maximum pressure and maximum rate of pressure increase of the optical engine, the Diesel mode was run at a higher EGR percentage than the HCCI mode to slow down the combustion. A third mode, pilot combustion, was also investigated. This pilot combustion is created by an injection at 30 CAD before TDC followed by a second injection just before TDC.
X