Refine Your Search

Search Results

Viewing 1 to 17 of 17
Technical Paper

Effect of ADOIL TAC Additive on Diesel Combustion

1991-11-01
912555
Some papers on the combustion in a diesel engine have been already presented to discuss the effect of the additive called ADOIL TAC. A bottom view DI diesel engine driven at 980rpm with no load was used in the experiment presented here, in order to make clear this effect. JIS second class light diesel fuel oil was injected through a hole nozzle at the normal test run. The additive was intermixed 0.01 vol. % in this fuel oil, in the experiments to compare with the normal combustion. The flame was taken by direct high-speed photography. Profiles of flame temperature and KL were detected on the film by image processing, applying the two-color method. Soot was visualized by high-speed laser shadowgraphy, and the heat release rate was calculated using the cylinder pressure diagram. Discussion on the effect of the additive on the combustion phenomena was made by using all the data.
Technical Paper

Effect of Initial Fuel Temperature on Spray Characteristics of Multicomponent Fuel

2020-09-15
2020-01-2113
Fuel design concept has been proposed for low emission and combustion control in engine systems. In this concept, the multicomponent fuels, which are mixed with a high volatility fuel (gasoline or gaseous fuel components) and a low volatility fuel (gas oil or fuel oil components), are used for artificial control of fuel properties. In addition, these multicomponent fuels can easily lead to flash boiling which promote atomization and vaporization in the spray process. In order to understand atomization and vaporization process of multicomponent fuels in detail, the model for flash boiling spray of multicomponent fuel have been constructed and implemented into KIVA3V rel.2. This model considers the detailed physical properties and evaporation process of multicomponent fuel and the bubble nucleation, growth and disruption in a nozzle orifice and injected fuel droplets.
Journal Article

Simultaneous Reduction of Pressure Rise Rate and Emissions in a Compression Ignition Engine by Use of Dual-Component Fuel Spray

2012-10-23
2012-32-0031
Ignition, combustion and emissions characteristics of dual-component fuel spray were examined for ranges of injection timing and intake-air oxygen concentration. Fuels used were binary mixtures of gasoline-like component i-octane (cetane number 12, boiling point 372 K) and diesel fuel-like component n-tridecane (cetane number 88, boiling point 510 K). Mass fraction of i-octane was also changed as the experimental variable. The experimental study was carried out in a single cylinder compression ignition engine equipped with a common-rail injection system and an exhaust gas recirculation system. The results demonstrated that the increase of the i-octane mass fraction with optimizations of injection timing and intake oxygen concentration reduced pressure rise rate and soot and NOx emissions without deterioration of indicated thermal efficiency.
Technical Paper

Multicomponent Fuel Consideration for Spray Evaporation Field and Spray-Wall Interaction

2001-03-05
2001-01-1071
It is expected that the analysis of the evaporation process for multicomponent fuels such as actual fuels like gasoline and diesel gas oil could be performed to assess more accurately the mixture preparation field inside the cylinder of D.I.S.I engines and diesel engines. In this paper, we suggested the importance of this multicomponent fuel consideration relating to the mixture formation and combustion characteristics from the basis of their own fuel physical and chemical properties. Then, we introduce a treatment for the phase change of a multicomponent solution through the formation of two-phase regions with the basis of chemical-thermodymical liquid-vapor equilibrium. Next, we analyze the distillation properties of a multicomponent fuel as well as the evaporation process of a multicomponent single droplet by use of the chemical-thermodymical analysis.
Technical Paper

Detailed Chemical Kinetic Modeling of Diesel Spray Combustion with Oxygenated Fuels

2001-03-05
2001-01-1262
This paper confirms a structure for the soot formation process inside a burning diesel jet plume of oxygenated fuels. An explanation of how the soot formation process changes by the use of oxygenated fuel in comparison with that for using a conventional diesel fuel, and why oxygenated fuel drastically suppresses the soot formation has been derived from the chemical kinetic analysis. A detailed chemical kinetic mechanism, which is combined with various proposed chemical kinetic models including normal paraffinic hydrocarbon oxidation, oxygenated hydrocarbon oxidation, and poly-aromatic hydrocarbon (PAH) formation, was developed in present study. The calculated results are presented to elucidate the influence of fuel mixture composition and fuel structure, especially relating to oxygenated fuels, on PAH formation. The analysis also provides a new insight into the initial soot formation process in terms of the temperature range of PAH formation.
Technical Paper

Soot Kinetic Modeling and Empirical Validation on Smokeless Diesel Combustion with Oxygenated Fuels

2003-05-19
2003-01-1789
This paper provides new insights on the mechanism of the smokeless diesel combustion with oxygenated fuels, based on a combination of soot kinetic modeling and optical diagnostics. The chemical effects of fuel compositions, including aromatics - paraffins blend, neat oxygenated fuels and oxygenate additives, on sooting equivalence ratio ‘ϕ’ - temperature ‘T’ dependence were numerically examined using a detailed soot kinetic model. To better understand the physical factors affecting soot formation in oxygenated fuel sprays, the effects of injection pressure and ambient gas temperature on the flame lift-off length and relative soot concentration in oxygenated fuel jets were experimentally investigated. The computational results show that the leaner mixture side of soot formation peninsula on the ϕ - T map, rather than the lower temperature one, should be utilized to suppress the formation of PAHs and ultra-fine particles together with the large reduction in particulate mass.
Technical Paper

Knocking Phenomena in a Rapid Compression and Expansion Machine

1992-02-01
920064
In this study, a rapid compression and expansion machine(RCEM) with a pancake combustion chamber was designed to investigate fundamentally on the knocking phenomena in spark ignition(S.I) engines. This RCEM is intended to simulate combustion in an actual engine. The homogeneous pre-mixture of n-pentane and air was charged into a quiescent atmosphere of the chamber. Then, the combustion field become simpler in this machine than it in a real S.I. engine. Also, the combustion phenomena, that is a cylinder pressure history, the behavior of flame propagation and so on, with high reproducibility are realized in this machine. The phenomena caught in this experiment were so-called low speed knocking. And, this knocking characteristics such as a knock intensity and a knock mass fraction were revealed by the cylinder pressure analysis varying the charge pressure and the equivalence ratio of the mixture, a compression ratio and an ignition timing.
Technical Paper

Visualization of the Cavitating Flow inside the Nozzle Hole Using by Enlarged Acrylic Nozzle

2011-08-30
2011-01-2062
In this study, it is purpose to make clear the effect of cavitation phenomenon on the spray atomization. In this report, the cavitation phenomenon inside the nozzle hole was visualized and the pressure measurements along the wall of the nozzle hole were carried out by use of 25-times enlarged acrylic nozzle. For the representatives of regular gasoline, single and two-component fuels were used as a test fuel. In addition, various cavitating flow patterns same as experimental conditions were simulated by use of Barotropic model incorporated in commercial code of Star-CD scheme, and compared with experimental results.
Technical Paper

Analysis of Knocking Mechanism Applying the Chemical Luminescence Method

1995-02-01
951005
One of the most effective means of improving the thermal efficiency and the specific fuel consumption in spark ignition engines is the increase of the compression ratio. However, there is a limit to it because of the generation of knocking combustion due to the rise of temperature and pressure in the unburnt mixture. Also in turbo charged spark ignition engines, the ignition timing cannot be advanced until MBT in order to avoid the knocking phenomena. Generally speaking, it is very difficult to investigate the phenomena in an actual engine, because there are many restriction and the phenomena are too complex and too fast. According-ly, it is advantageous to reveal the phenomena fundamentally, including the autoignition process of the end-gas by using simplified model equipment. Therefore, a rapid compression and expansion machine (RCEM) with a pan-cake combustion chamber was designed and developed for the experiments presented here.
Technical Paper

Effect of Nozzle Configurations for Characteristics of Non-Reacting Diesel Fuel Spray

1997-02-24
970355
The spray structure under the pressurized atmosphere at a room temperature was examined by the various photographic methods. The fuel flow inside the nozzle was investigated by the transparent model nozzles. The experimental analysis of sprays yielded the spray dispersing angle, the distribution of fuel droplets inside the spray and the jet intact core length. The obtained results of those spray characteristics showed that the spray structure is divided into two spatial regimes due to their formation mechanisms. Within 10 mm from the nozzle, the spray dispersion is dominated by the turbulent states of fuel which are initiated inside the nozzle. At distance from the nozzle z > 20 - 40 mm, the spray consists of an induced gas vortex street whose length is about half of the spray width. It is proposed that the kinematic viscosity of ambient gas is a important factor which rules the process of momentum exchange form the fuel jet to the ambient gas.
Technical Paper

Effect of Ambient Gas Properties for Characteristics of Non-Reacting Diesel Fuel Spray

1997-02-24
970352
In this paper, spray characteristics were examined to deduce the effect of ambient gas properties. Considered ambient properties were the viscosity μa and density ρa, and thus the kinematic viscosity νa. The objective of this paper is to reveal the effect of compressibility of the ambient gas to spray formation. In the experiments, the changed ranges were And a standard-sac volume nozzle of hole diameter dn =0.25 mm (ln/dn=3.0) was used at constant injection pressure difference (Δp=16.2 MPa). Also the injection pressure was varied in the range of 55 to 120 MPa with a mini-sac volume nozzle of hole diameter dn =0.20 mm (ln/dn =5.5). Several different gases were used to change the ambient viscosity at a room temperature. From the experiments, it is obtained that larger the viscosity, the more the spray spreads in the radial direction, thus the spray angle gets larger and the tip penetration became shorter.
Technical Paper

CO2 Mixed Fuel Combustion System for Reduction of NO and Soot Emission in Diesel Engine

1997-02-24
970319
We propose a new concept on simultaneous reduction of NO and soot emissions in Diesel engine exhaust by the diesel fuel oil (n-Tridecane) with liquefied CO2 dissolved. The CO2 dissolved fuel is expected to undergo flash boiling or gas separation when being injected into the combustion chamber and improve spray atomization and mixing process both of which are primary factors to govern soot formation. Also the internal EGR effect caused by CO2 injected with the fuel is expected to NO formation. In order to assess this concept, combustion experiments were carried out using a rapid compression and expansion machine. Thus, flame characteristics and heat release rate were analyzed for the combustion process of diesel fuel and CO2 mixed fuel. And, it is revealed that the diesel fuel-liquefied CO2 mixed fuel can successfully reduce NO emission in a diesel combustion system.
Technical Paper

Transient Characteristics of Fuel Atomization and Droplet Size Distribution in Diesel Fuel Spray

1983-02-01
830449
The purposes of this study are to clarify the atomization mechanism, the change over time in droplet size distribution, and the change in spray characteristics dependent on back pressure on diesel fuel spray. Diesel spray injected into a quiescent gaseous environment under high pressure is observed by taking direct microscopic photographs varying the moment of exposure, the back pressure, and the ambient density. The results show that the mechanism of spray atomization is divided into 4 processes, and spatial distribution of breakup droplets and a droplet volume rate are assessed for the whole spray region. Total and local distributions of droplet size are expressed by empirical equations as a function of time elapsed from the moment of injection. It is confirmed that the uniformity of the distribution, Sauter mean diameter of droplets, and droplet production rate change with time. Mean droplet diameter is further described in relation to the pressure drop and the ambient density.
Technical Paper

Characteristics of a Diesel Spray Impinging on a Flat Wall

1989-02-01
890264
In a small high-speed DI diesel engine, injected fuel sprays impinge on the wall of piston cavity. Discussion and analysis of the combustion phenomena in the diesel engine demand the measurement of the characteristics of the impinging spray. In the experiments presented here, diesel fuel oil was injected into a high pressure chamber in which compressed air or CO2 gas at room temperature was charged. The single spray was impinged on a flat wall at a normal angle. The growth of the spray was photographed, not only with transmitted light but also with scattered light through a narrow slit. The temporal and spatial distribution of the droplets density in the impinging spray applying the concentric circle model was calculated using the data of the laser light extinction method. From these results, the detailed information concerning the droplets density in the impinging diesel spray was obtained.
Technical Paper

Modeling and Measurement on Evaporation Process of Multicomponent Fuels

2000-03-06
2000-01-0280
In previous multi-dimensional modeling on spray dynamics and vapor formation, single component fuel with pure substance has been analyzed to assess the mixture formation. Then it should be expected that the evaporation process could be performed for the multicomponent fuel such as actual Gasoline and Diesel gas oil. In this study, vapor-liquid equilibrium prediction was conducted for multicomponent fuels such as 3 and 10 components mixed solution with ideal solution analysis and non-ideal solution analysis. And the computation of distillation characteristics was conducted for the steady state fuel condition fuel condition to understand the evaporation process. As a result, calculated distillation characteristics are consistent well with experiment results. And the evaporation process of a multicomponent droplet in the combustion chamber has been calculated with the variation of ambient pressure and temperature.
Technical Paper

Low Emission Diesel Combustion System by Use of Reformulated Fuel with Liquefied CO2 and n-Tridecane

1999-03-01
1999-01-1136
We propose a new concept on simultaneous reduction of NO and soot emissions in Diesel engine exhaust by use of the diesel fuel oil (n-Tridecane) with liquefied CO2 dissolved. The CO2 dissolved component is expected to undergo flash boiling or gas separation when being injected into the combustion chamber, and improve spray atomization and mixing process both of which are primary factors to govern soot formation. Further, the internal EGR effect caused by CO2 component injected with the fuel is expected for NO formation. In order to assess this concept, spray dynamics measurement was conducted in the constant volume vessel with a variation of ambient pressure and temperature. Further, combustion experiments were carried out by using a rapid compression and expansion machine. Here, characteristics of the evaporative mixed fuel spray were examined by shadowgraph photography.
Journal Article

Effect of Blended Fuel of Hydrotreated Vegetable Oil and Fatty Acid Methyl Ester on Spray and Combustion Characteristics

2022-01-09
2022-32-0073
Research on alternative fuels is necessary to reduce CO2 emissions. Hydrotreated Vegetable Oil (HVO) of light fuel physically improves spray and combustion characteristics. Fatty Acid Methyl Ester (FAME) is an oxygenated fuel and its combustion characteristics are chemically improved, although its spray characteristics such as penetration and atomization are deteriorated. The purpose of this study is to understand the effects of blending HVO, which has carbon neutral (CN) characteristics, with FAME, which also has CN characteristics, on spray and combustion characteristics, and to further improve emission such as THC and Smoke. This report presents the effect of the combination of improved spray characteristics and oxygenated fuel on emissions. Spray characteristics such as penetration, spray angle and spray volume were investigated by shadowgraph photography.
X