Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Dedicated GTL Vehicle: A Calibration Optimization Study

2010-04-12
2010-01-0737
GTL (Gas-To-Liquid) fuel is well known to improve tailpipe emissions when fuelling a conventional diesel vehicle, that is, one optimized to conventional fuel. This investigation assesses the additional potential for GTL fuel in a GTL-dedicated vehicle. This potential for GTL fuel was quantified in an EU 4 6-cylinder serial production engine. In the first stage, a comparison of engine performance was made of GTL fuel against conventional diesel, using identical engine calibrations. Next, adaptations enabled the full potential of GTL fuel within a dedicated calibration to be assessed. For this stage, two optimization goals were investigated: - Minimization of NOx emissions and - Minimization of fuel consumption. For each optimization the boundary condition was that emissions should be within the EU5 level. An additional constraint on the latter strategy required noise levels to remain within the baseline reference.
Journal Article

Dynamic Analysis of the Audi Valvelift System

2010-04-12
2010-01-1195
Fully variable valve trains provide comprehensive means of adjustment in terms of variable valve timing and valve lift. The efficiency of the engine is improved in the operating range and in return, an increasing complexness of the mechanical design and control engineering must be handled. For optimization and design of these kinds of complex systems, detailed simulation models covering different physical domains, i.e. mechanics, hydraulics, electrodynamics and control are needed. Topic of this work is the variable valve train named Audi valvelift system (AVS) e.g. used in the Audi 2.8l V6 FSI engine. The idea of AVS is to use different cam lobes at different operating points. Each intake valve can be actuated by a large and a small cam. For full load, the two inlet valves are opened by the large cam profile - ideal for high charge volumes and flow speeds in the combustion chamber. Under partial load, the small cam profiles are used.
Journal Article

Simulation Methodology for Consideration of Injection System on Engine Noise Contribution

2010-06-09
2010-01-1410
The target of the investigation is the particular influence of a fuel injection system and its components as a noise source in automotive engines. The applied methodology is demonstrated on an automotive Inline 4-cylinder Diesel engine using a common rail system. This methodology is targeted as an extension of a typical standard acoustic simulation approach for combustion engines. Such approaches basically use multi-body dynamic simulation with interacting FEM based flexible structures, where the main excitation crank train, timing drive, valve train system and piston secondary motion are considered. Within the extended approach the noise excitation of the hydraulic and mechanical parts of the entire fuel system is calculated and subsequently considered within the multi-body dynamic simulation for acoustic evaluation of structural vibrations.
Journal Article

Power Train Model Refinement Linked with Parameter Updating Through Nonlinear Optimization

2010-06-09
2010-01-1421
In the virtual development process validated simulation models are requested to accurately predict power train vibration and comfort phenomena. Conclusions from refined parameter studies enable to avoid costly tests on rigs and on the road. Thereby, an appropriate modeling approach for specific phenomena has to be chosen to ensure high quality results. But then, parameters for characterizing the dynamic properties of components are often insufficient and have to be roughly estimated in this development stage. This results in a imprecise prediction of power train resonances and in a less conclusive understanding of the considered phenomena. Conclusions for improvements remain uncertain. This paper deals with the two different aspects of model refinement and parameter updating. First an existing power train model (predecessor power train) is analyzed whether the underlying modeling approach can reproduce the physical behavior of the power train dynamics adequately.
Journal Article

CO2 Reduction Potential through Improved Mechanical Efficiency of the Internal Combustion Engine: Technology Survey and Cost-Benefit Analysis

2013-04-08
2013-01-1740
The need for significant reduction of fuel consumption and CO₂ emissions has become the major driver for development of new vehicle powertrains today. For the medium term, the majority of new vehicles will retain an internal combustion engine (ICE) in some form. The ICE may be the sole prime mover, part of a hybrid powertrain or even a range extender; in every case potential still exists for improvement in mechanical efficiency of the engine itself, through reduction of friction and of parasitic losses for auxiliary components. A comprehensive approach to mechanical efficiency starts with an analysis of the main contributions to engine friction, based on a measurement database of a wide range of production engines. Thus the areas with the highest potential for improvement are identified. For each area, different measures for friction reduction may be applicable with differing benefits.
Journal Article

Dual Fuel Engine Simulation - A Thermodynamic Consistent HiL Compatible Model

2014-04-01
2014-01-1094
This works presents a real-time capable simulation model for dual fuel operated engines. The computational performance is reached by an optimized filling and emptying modeling approach applying tailored models for in-cylinder combustion and species transport in the gas path. The highly complex phenomena taking place during Diesel and gasoline type combustion are covered by explicit approaches supported by testbed data. The impact of the thermodynamic characteristics induced by the different fuels is described by an appropriate set of transport equations in combination with specifically prepared property databases. A thermodynamic highly accurate 6-species approach is presented. Additionally, a 3-species and a 1-species transport approach relying on the assumption of a lumped fuel are investigated regarding accuracy and computational performance. The comparison of measured and simulated pressure and temperature traces shows very good agreement.
Journal Article

Integrated 1D/2D/3D Simulation of Fuel Injection and Nozzle Cavitation

2013-09-08
2013-24-0006
To promote advanced combustion strategies complying with stringent emission regulations of CI engines, computational models have to accurately predict the injector inner flow and cavitation development in the nozzle. This paper describes a coupled 1D/2D/3D modeling technique for the simulation of fuel flow and nozzle cavitation in diesel injection systems. The new technique comprises 1D fuel flow, 2D multi-body dynamics and 3D modeling of nozzle inner flow using a multi-fluid method. The 1D/2D model of the common rail injector is created with AVL software Boost-Hydsim. The computational mesh including the nozzle sac with spray holes is generated with AVL meshing tool Fame. 3D multi-phase calculations are performed with AVL software FIRE. The co-simulation procedure is controlled by Boost-Hydsim. Initially Hydsim performs a standalone 1D simulation until the needle lift reaches a prescribed tolerance (typically 2 to 5 μm).
Technical Paper

Evaluation of Flow Paths due to Leakages of Flammable Liquids by the SPH Method: Application to Real Engines

2020-04-14
2020-01-1111
One of the most important safety issues for automotive engineering is to avoid any fire due to the ignition of flammable liquids, which may result from leaks. Fire risk is a combination of hot temperature, fast vaporisation and accumulation of vapor in a cavity. In IC engines, potentially flammable liquids are fuel and oil. To guarantee safety, flammable liquids must not come into contact with hot parts of the engine. Consequently, shields are designed to guide the flow path of possible leakages and to take any flammable liquid out of the hot areas. Simulation is a great help to optimize the shape of the shield by investigating a large number of possible leakages rapidly. Recent breakthroughs in numerical methods make it possible to apply simulations to industrial design concepts. The employed approach is based on the Lagrangian Smoothed Particle Hydrodynamics (SPH) method.
Technical Paper

Uncertainty Quantification in Vibroacoustic Analysis of a Vehicle Body Using Generalized Polynomial Chaos Expansion

2020-09-30
2020-01-1572
It is essential to include uncertainties in the simulation process in order to perform reliable vibroacoustic predictions in the early design phase. In this contribution, uncertainties are quantified using the generalized Polynomial Chaos (gPC) expansion in combination with a Finite Element (FE) model of a vehicle body in white. It is the objective to particularly investigate the applicability of the gPC method in the industrial context with a high number of uncertain parameters and computationally expensive models. A non-intrusive gPC expansion of first and second order is implemented and the approximation of a stochastic response process is compared to a Latin Hypercube sampling based reference solution with special regard to accuracy and computational efficiency. Furthermore, the method is examined for other input distributions and transferred to another FE model in order to verify the applicability of the gPC method in practical applications.
Technical Paper

Challenges in Vibroacoustic Vehicle Body Simulation Including Uncertainties

2020-09-30
2020-01-1571
During the last decades, big steps have been taken towards a realistic simulation of NVH (Noise Vibration Harshness) behavior of vehicles using the Finite Element (FE) method. The quality of these computation models has been substantially increased and the accessible frequency range has been widened. Nevertheless, to perform a reliable prediction of the vehicle vibroacoustic behavior, the consideration of uncertainties is crucial. With this approach there are many challenges on the way to valid and useful simulation models and they can be divided into three areas: the input uncertainties, the propagation of uncertainties through the FE model and finally the statistical output quantities. Each of them must be investigated to choose sufficient methods for a valid and fast prediction of vehicle body vibroacoustics. It can be shown by rough estimation that dimensionality of the corresponding random space for different types of uncertainty is tremendously high.
Technical Paper

Root Cause Analysis and Structural Optimization of E-Drive Transmission

2020-09-30
2020-01-1578
This paper describes the simulation tool chain serving to design and optimize the transmission of an electric axle drive from concept to final design with respect to NVH. A two-stage transmission of an eAxle is designed from scratch by the initial layout of gears and shafts, including the optimization of gear micro geometry. After the shaft system and bearings are defined, the concept design of the transmission housing is evaluated with the help of a basic topology optimization regarding stiffness and certain eigenfrequencies. In the next step a fully flexible multi-body dynamic (MBD) and acoustic analysis of the transmission is performed using internally calculated excitations due to gear contact and bearing interaction with shaft and gear dynamics for the entire speed and load range. Critical operating conditions in terms of shaft dynamics, structure borne noise and noise radiation are evaluated and selected as target for optimization in the following steps.
Technical Paper

Model-Based Calibration of an Automotive Climate Control System

2020-04-14
2020-01-1253
This paper describes a novel approach for modeling an automotive HVAC unit. The model consists of black-box models trained with experimental data from a self-developed measurement setup. It is capable of predicting the temperature and mass flow of the air entering the vehicle cabin at the various air vents. A combination of temperature and velocity sensors is the basis of the measurement setup. A measurement fault analysis is conducted to validate the accuracy of the measurement system. As the data collection is done under fluctuating ambient conditions, a review of the impact of various ambient conditions on the HVAC unit is performed. Correction models that account for the different ambient conditions incorporate these results. Numerous types of black-box models are compared to identify the best-suited type for this approach. Moreover, the accuracy of the model is validated using test drive data.
Journal Article

A Hybrid Development Process for NVH Optimization and Sound Engineering Considering the Future Pass-by Homologation Demands

2016-11-08
2016-32-0043
Beside hard facts as performance, emissions and fuel consumption especially the brand specific attributes such as styling and sound are very emotional, unique selling prepositions. To develop these emotional characters, within the given boundary conditions of the future pass-by regulation, it is necessary to define them at the very beginning of the project and to follow a consequent development process. The following paper shows examples of motorcycle NVH development work on noise cleaning and sound engineering using a hybrid development process combining front loading, simulation and testing. One of the discussed solutions is the investigation of a piston pin offset in combination with a crankshaft offset for the reduction of friction. The optimization of piston slap noise as a result of the piston secondary motion was performed by simulation. As another example a simulation based development was performed for the exhaust system layout.
Journal Article

Improved Modeling of Near-Wall Heat Transport for Cooling of Electric and Hybrid Powertrain Components by High Prandtl Number Flow

2017-03-28
2017-01-0621
Reynolds-averaged Navier-Stokes (RANS) computations of heat transfer involving wall bounded flows at elevated Prandtl numbers typically suffer from a lack of accuracy and/or increased mesh dependency. This can be often attributed to an improper near-wall turbulence modeling and the deficiency of the wall heat transfer models (based on the so called P-functions) that do not properly account for the variation of the turbulent Prandtl number in the wall proximity (y+< 5). As the conductive sub-layer gets significantly thinner than the viscous velocity sub-layer (for Pr >1), treatment of the thermal buffer layer gains importance as well. Various hybrid strategies utilize blending functions dependent on the molecular Prandtl number, which do not necessarily provide a smooth transition from the viscous/conductive sub-layer to the logarithmic region.
Journal Article

A Numerical and Experimental Evaluation of Open Jet Wind Tunnel Interferences using the DrivAer Reference Model

2016-04-05
2016-01-1597
The open jet wind tunnel is a widespread test section configuration for developing full scale passenger cars in the automotive industry. However, using a realizable nozzle cross section for cost effective aerodynamic development is always connected to the presence of wind tunnel effects. Wind tunnel wall interferences which are not present under open road conditions, can affect the measurement of aerodynamic forces. Thus, wind tunnel corrections may be required. This work contains the results of a CFD (Computational Fluid Dynamics) approach using unsteady Delayed Detached Eddy Simulations (DDES) to evaluate wind tunnel interferences for open jet test sections. The Full Scale DrivAer reference geometry of the Technical University of Munich (TUM) using different rear end shapes has been selected for these investigations.
Journal Article

Modeling of Catalyzed Particulate Filters - Concept Phase Simulation and Real-Time Plant Modeling on HiL

2016-04-05
2016-01-0969
The present work introduces an extended particulate filter model focusing on capabilities to cover catalytic and surface storage reactions and to serve as a virtual multi-functional reactor/separator. The model can be classified as a transient, non-isothermal 1D+1D two-channel model. The applied modeling framework offers the required modeling depth to investigate arbitrary catalytic reaction schemes and it follows the computational requirement of running in real-time. The trade-off between model complexity and computational speed is scalable. The model is validated with the help of an analytically solved reference and the model parametrization is demonstrated by simulating experimentally given temperatures of a heat-up measurement. The detailed 1D+1D model is demonstrated in a concept study comparing the impact of different spatial washcoat distributions.
Journal Article

Development of a High Performance Natural Gas Engine with Direct Gas Injection and Variable Valve Actuation

2017-09-04
2017-24-0152
Natural gas is a promising alternative fuel for internal combustion engine application due to its low carbon content and high knock resistance. Performance of natural gas engines is further improved if direct injection, high turbocharger boost level, and variable valve actuation (VVA) are adopted. Also, relevant efficiency benefits can be obtained through downsizing. However, mixture quality resulting from direct gas injection has proven to be problematic. This work aims at developing a mono-fuel small-displacement turbocharged compressed natural gas engine with side-mounted direct injector and advanced VVA system. An injector configuration was designed in order to enhance the overall engine tumble and thus overcome low penetration.
Journal Article

Particulate Matter Classification in Filtration and Regeneration-Plant Modeling for SiL and HiL Environment

2017-03-28
2017-01-0970
The present work describes an existing transient, non-isothermal 1D+1D particulate filter model to capture the impact of different types of particulate matter (PM) on filtration and regeneration. PM classes of arbitrary characteristics (size, composition etc.) are transported and filtered following standard mechanisms. PM deposit populations of arbitrary composition and contact states are used to describe regeneration on a micro-kinetical level. The transport class and deposit population are linked by introducing a splitting deposit matrix. Filtration and regeneration modes are compared to experimental data from literature and a brief numerical assessment on the filtration model is performed. The filter model as part of an exhaust line is used in a concept study on different coating variants. The same exhaust line model is connected to an engine thermodynamic and vehicle model. This system model is run through a random drive cycle in office simulation.
Journal Article

Bridging the Gap between Open Loop Tests and Statistical Validation for Highly Automated Driving

2017-03-28
2017-01-1403
Highly automated driving (HAD) is under rapid development and will be available for customers within the next years. However the evidence that HAD is at least as safe as human driving has still not been produced. The challenge is to drive hundreds of millions of test kilometers without incidents to show that statistically HAD is significantly safer. One approach is to let a HAD function run in parallel with human drivers in customer cars to utilize a fraction of the billions of kilometers driven every year. To guarantee safety, the function under test (FUT) has access to sensors but its output is not executed, which results in an open loop problem. To overcome this shortcoming, the proposed method consists of four steps to close the loop for the FUT. First, sensor data from real driving scenarios is fused in a world model and enhanced by incorporating future time steps into original measurements.
Journal Article

Definition of Gearshift Pattern: Innovative Optimization Procedures Using System Simulation

2011-04-12
2011-01-0395
Today's powertrains are becoming more and more complex due to the increasing number of gear box types requiring gearshift patterns like conventional (equipped with GSI) and automatic-manual transmissions (AT, AMT), double clutch and continuous variable transmissions (DCT, CVT). This increasing variety of gear boxes requires a higher effort for the overall optimization of the powertrain. At the same time, it is necessary to assess the impact of different powertrains and control strategies on CO₂ emissions very early in the development process. The optimization of Gear Shift Patterns (G.S.P.) has to fulfill multiple constraints in terms of objective customers' requirements, like driveability, NVH, performance, emissions and fuel consumption. For these reasons, RENAULT and AVL entered an engineering collaboration in order to develop a dedicated simulation tool: CRUISE GSP.
X