Refine Your Search

Topic

Author

Search Results

Journal Article

Development of the Combustion System for a Flexible Fuel Turbocharged Direct Injection Engine

2010-04-12
2010-01-0585
Gasoline turbocharged direct injection (GTDI) engines, such as EcoBoost™ from Ford, are becoming established as a high value technology solution to improve passenger car and light truck fuel economy. Due to their high specific performance and excellent low-speed torque, improved fuel economy can be realized due to downsizing and downspeeding without sacrificing performance and driveability while meeting the most stringent future emissions standards with an inexpensive three-way catalyst. A logical and synergistic extension of the EcoBoost™ strategy is the use of E85 (approximately 85% ethanol and 15% gasoline) for knock mitigation. Direct injection of E85 is very effective in suppressing knock due to ethanol's high heat of vaporization - which increases the charge cooling benefit of direct injection - and inherently high octane rating. As a result, higher boost levels can be achieved while maintaining optimal combustion phasing giving high thermal efficiency.
Journal Article

Computational Study of the Aerodynamics of a Realistic Car Model by Means of RANS and Hybrid RANS/LES Approaches

2014-04-01
2014-01-0594
The aerodynamic properties of a BMW car model, representing a 40%-scaled model of a relevant car configuration, are studied computationally by means of the Unsteady RANS (Reynolds-Averaged Navier-Stokes) and Hybrid RANS/LES (Large-Eddy Simulation) approaches. The reference database (geometry, operating parameters and surface pressure distribution) are adopted from an experimental investigation carried out in the wind tunnel of the BMW Group in Munich (Schrefl, 2008). The present computational study focuses on validation of some recently developed turbulence models for unsteady flow computations in conjunction with the universal wall treatment combining integration up to the wall and high Reynolds number wall functions in such complex flow situations. The turbulence model adopted in both Unsteady RANS and PANS (Partially-Averaged Navier Stokes) frameworks is the four-equation ζ − f formulation of Hanjalic et al. (2004) based on the Elliptic Relaxation Concept (Durbin, 1991).
Journal Article

A Study on Operation Fluid Consumption for Heavy Duty Diesel Engine Application using both, EGR and SCR

2013-09-24
2013-01-2474
This paper describes a method for optimization of engine settings in view of best total cost of operation fluids. Under specific legal NOX tailpipe emissions requirements the engine out NOX can be matched to the current achievable SCR NOX conversion efficiency. In view of a heavy duty long haul truck application various specific engine operation modes are defined. A heavy duty diesel engine was calibrated for all operation modes in an engine test cell. The characteristics of engine operation are demonstrated in different transient test cycles. Optimum engine operation mode (EOM) selection strategies between individual engine operation modes are discussed in view of legal test cycles and real world driving cycles which have been derived from on-road tests.
Technical Paper

21SIAT-0638 - Fleet Analytics - A Data-Driven and Synergetic Fleet Validation Approach

2021-09-22
2021-26-0499
Current developments in automotive industry such as hybrid powertrains and the continuously increasing demands on emission control systems, are pushing complexity still further. Validation of such systems lead to a huge amount of test cases and hence extreme testing efforts on the road. At the same time the pressure to reduce costs and minimize development time is creating challenging boundaries on development teams. Therefore, it is of utmost importance to utilize testing and validation prototypes in the most efficient way. It is necessary to apply high levels of instrumentation and collect as much data as possible. And a streamlined data pipeline allows the fleet managers to get new insights from the raw data and control the validation vehicles as well as the development team in the most efficient way. In this paper we will demonstrate a data-driven approach for validation testing.
Technical Paper

A Generic Testbody for Low-Frequency Aeroacoustic Buffeting

2020-09-30
2020-01-1515
Raising demands towards lightweight design paired with a loss of originally predominant engine noise pose significant challenges for NVH engineers in the automotive industry. From an aeroacoustic point of view, low frequency buffeting ranks among the most frequently encountered issues. The phenomenon typically arises due to structural transmission of aerodynamic wall pressure fluctuations and/or, as indicated in this work, through rear vent excitation. A possible workflow to simulate structure-excited buffeting contains a strongly coupled vibro-acoustic model for structure and interior cavity excited by a spatial pressure distribution obtained from a CFD simulation. In the case of rear vent buffeting no validated workflow has been published yet. While approaches have been made to simulate the problem for a real-car geometry such attempts suffer from tremendous computation costs, meshing effort and lack of flexibility.
Technical Paper

Analytical Methodology to Derive a Rule-Based Energy Management System Enabling Fuel-Optimal Operation for a Series Hybrid

2020-09-15
2020-01-2257
Due to the continuous electrification of vehicles, the variety of different hybrid topologies is expected to increase in the future. As the calibration of real-time capable energy management systems (EMS) is still challenging, a development framework for the EMS that is independent of the hybrid topology would simplify the overall development process of hybrid vehicles. In this paper an analytical methodology, which is used to derive a fuel-optimal, rule-based EMS for parallel hybrids, is transferred to a series topology. It is shown that the fundamental correlations can be applied universally to both parallel and series configurations. This enables the possibility to develop a real-time capable, rule-based controller for a series HEV based on maps that ensures a fuel-optimal operation. These maps provide the optimal power threshold for the activation of the auxiliary power unit and the optimal power output dependent on the driver’s power request.
Journal Article

Electronic Stability Control of a Narrow Tilting Vehicle

2011-04-12
2011-01-0976
This paper aims to contribute to the development of an electronic stability control for narrow, fully tiling vehicles with handling and stability characteristics similar to motorcycles, and to improve the understanding of the driver-vehicle interaction. To allow for high energy efficiency of the control system, mainly steering torque is applied to stabilize and tilt the vehicle. The dynamic properties of the specific investigated vehicle suggest high demands to a driver without an appropriate control system. To allow for automobile-like operation of the steering wheel, the motion of the steering wheel and the steering system of the front wheel has been decoupled, and a steer-by-wire system has been developed. Both simulations and field tests with a prototype proved proper performance of the electronic stability control, but also revealed the need of an automobile driver to adapt to this kind of vehicle when operating it even with the control system.
Journal Article

Impact of the Turbulence Model and Numerical Approach on the Prediction of the Ammonia Homogenization in an Automotive SCR System

2012-04-16
2012-01-1291
The Selective Catalytic Reduction (SCR) is a promising approach to meet future legislation regarding the nitric oxide emissions of diesel engines. In automotive applications a liquid urea-water solution (UWS) is injected into the hot exhaust gas. It evaporates and decomposes to ammonia vapor acting as the reducing agent. Significant criteria for an efficient SCR system are a fast mixture preparation of the UWS and a high ammonia uniformity at the SCR catalyst. Multiphase CFD simulation is capable to support the development of this process. However, major challenges are the correct description of the liquid phase behavior and the simulation of the ammonia vapor mixing in the turbulent exhaust gas upstream of the SCR catalyst. This paper presents a systematic study of the impact of the turbulence model and the numerical spatial discretization scheme on the prediction of the turbulent mixing process of the gaseous ammonia.
Technical Paper

Automatic Cycle Border Detection for a Statistic Evaluation of the Loading Process of Earth-moving Vehicles

2007-10-30
2007-01-4191
In the earth-moving industry manymachines work in typical loading cycles that are repeated periodically. For a statistic examination of the overall load configuration and the dynamic fatigue of these machines, it is necessary to develop an adaptive algorithm for the separation of the individual cycles. This article presents methods for an automatic detection of the cycle borders. Adaptive algorithms are constructed for a reliable separation at different points during the loading cycle. Additionally, each cycle can be divided into different operating phases by extending the algorithms to a tool for the identification of each single phase. To avoid problems during the cycle detection, the data are checked for outliers and sensor faults first. To guarantee a meaningful statistical analysis, the separated cycles have to be tested for incorrect or atypical characteristics. Therefore, statistical classification numbers are calculated and compared for each cycle.
Technical Paper

The Role of Fuel Cells in Commercial Vehicles

2007-10-30
2007-01-4273
Fuel Cells (FC) are promising candidates to reduce energy consumption and, hence, to improve the global climate situation due to significant gains in the process efficiencies. Whereas the development of fuel cells for passenger car applications has intensified during the last years, commercial vehicle applications have not been in the focus of developers so far. A reason for that is the limited availability of fuels such as hydrogen. Commercial vehicles are in the most cases operated with diesel fuel. AVL has developed three fuel cell applications for commercial vehicles operated with diesel fuel.
Technical Paper

Objective Evaluation of Vehicle Driveability

1998-02-23
980204
Vehicle driveability evolves more and more as a key decisive factor for marketability and competitiveness of passenger cars, since the final decision of customers to buy a car is usually taken after a more or less intensive test drive. Car manufacturers currently evaluate vehicle driveability with subjective assessments and by having their experienced test drivers fill out form sheets. These assessments are time and cost intensive, limited in repeatability and not objective. The real customer requirements cannot be recognized in detail with this method. This paper describes a completely new approach for an objective and real time evaluation of relevant driveability criteria, for use in a vehicle and on a high dynamic test bed. The vehicle application enables an objective comparison between vehicles and an application as a development tool in many development and calibration phases, where ever fast and objective driveability results are required.
Technical Paper

Gasoline DI Engines: The Complete System Approach By Interaction of Advanced Development Tools

1998-02-23
980492
Gasoline direct injection is one of the main issues of actual worldwide SI engine development activities. It requires a comprehensive system approach from the basic considerations on optimum combustion system configuration up to vehicle performance and driveability. The general characteristics of currently favored combustion system configurations are discussed in this paper regarding both engine operation and design aspects. The engine performance, especially power output and emission potential of AVL's DGI engine concept is presented including the interaction of advanced tools like optical diagnostics and 3D-CFD simulation in the combustion system development process. The application of methods like tomographic combustion analysis for investigations in the multicylinder engine within further stages of development is demonstrated. The system layout and operational strategies for fuel economy in conjunction with exhaust gas aftertreatment requirements are discussed.
Technical Paper

Sound - Design for Motorcycles Influence of Different Parameters on the Sound

2006-11-13
2006-32-0084
Beside performance, handling and styling the sound characteristic of a motorcycle is a very important feature for the acceptance of the product by the customers and therefore the commercial success of a new product. Creating a special brand sound becomes more and more important to create a product that can be easily distinguished from competitor products and is therefore considered to be something special. On the other hand the legal limits in terms of pass - by noise allow for a very little margin for the creation of a special sound. During the product sound design phase the different perceptions of the rider wearing a helmet and pedestrians have to be considered. In passenger cars sound design has been known for a long time and the creation of a special sound for the driver inside the passenger compartment can be achieved with little influence on the exterior noise and therefore on the noise which is limited by legislation.
Technical Paper

Experimental Investigations and Computations of Unsteady Flow Past a Real Car Using a Robust Elliptic Relaxation Closure with a Universal Wall Treatment

2007-04-16
2007-01-0104
In the present work we investigated experimentally and computationally the unsteady flow around a BMW car model including wheels*. This simulation yields mean flow and turbulence fields, enabling the study aerodynamic coefficients (drag and lift coefficients, three-dimensional/spatial wall-pressure distribution) as well as some unsteady flow phenomena in the car wake (analysis of the vortex shedding frequency). Comparisons with experimental findings are presented. The computational approach used is based on solving the complete transient Reynolds-Averaged Navier-Stokes (TRANS) equations. Special attention is devoted to turbulence modelling and the near-wall treatment of turbulence. The flow calculations were performed using a robust, eddy-viscosity-based ζ - ƒ turbulence model in the framework of the elliptic relaxation concept and in conjunction with the universal wall treatment, combining integration up to the wall and wall functions.
Technical Paper

The Challenge of Precise Characterizing the Specific Large-Span Flows in Urea Dosing Systems for NOx Reduction

2008-04-14
2008-01-1028
The reduction of nitrous oxides in the exhaust gases of internal combustion engines using a urea water solution is gaining more and more importance. While maintaining the future exhaust gas emission regulations, like the Euro 6 for passenger cars and the Euro 5 for commercial vehicles, urea dosing allows the engine management to be modified to improve fuel economy as well. The system manufacturer Robert Bosch has started early to develop the necessary dosing systems for the urea water solution. More than 300.000 Units have been delivered in 2007 for heavy duty applications. Typical dosing quantities for those systems are in the range of 0.01 l/h for passenger car systems and up to 10 l/h for commercial vehicles. During the first years of development and application of urea dosing systems, instantaneous flow measuring devices were used, which were not operating fully satisfactory.
Technical Paper

V6-SUV Engine Sound Development

2009-05-19
2009-01-2177
This paper describes the development and achievement of a target engine sound for a V6 SUV in consideration of the sound quality preferences of customers in the U.S. First, a simple definition for engine sound under acceleration was found using order arrangement, frequency balance, and linearity. These elements are the product of commonly used characteristics in conventional development and can be applied simply when setting component targets. The development focused on order arrangement as the most important of these elements, and sounds with and without integer orders were selected as target candidates. Next, subjective auditory evaluations were performed in the U.S. using digitally processed sounds and an evaluation panel comprising roughly 40 subjects. The target sound was determined after classifying the results of this evaluation using cluster analysis.
Technical Paper

Enhanced Method for Fault Detection and Diagnosis of Vehicle Sensors using Parity Equations

2009-04-20
2009-01-0444
For driver assistant systems and drive-by-wire architectures fault detection and diagnosis are essential parts. Fault detection using parity equations is a well known approach which can be implemented in a straightforward way. Especially for fault diagnosis of vehicle sensors good isolating patterns for the interpretation of the residuals are available. However, in critical driving situations false alarms can occur, which may compromise the efficiency of safety relevant stability systems. In this paper a method is presented which reliably detects critical driving situations utilizing the estimated nominal cornering stiffness. The instantaneous cornering stiffness is estimated using the sideslip angle obtained by an observer. Using this quantity the nominal cornering stiffness can be estimated in order to discern the linear and nonlinear region of the tire model. In the nonlinear region false alarms are likely to occur and simple fault detection using parity equations cannot be used.
Technical Paper

Two-Cylinder Gasoline Engine Concept for Highly Integrated Range Extender and Hybrid Powertrain Applications

2010-09-28
2010-32-0130
The demand for improved fuel economy and the request for Zero Emission within cities require complex powertrains with an increasing level of electrification already in a short-termed timeframe until 2025. According to general expectations the demand for Mild-Hybrid powertrains will increase significantly within a broad range of implementation through all vehicle classes as well as on electric vehicles with integrated Range Extender (RE) mainly for use in urban areas. Whereas Mild Hybrid Vehicles basically use downsized combustion engines at current technology level, vehicles with a high level of powertrain electrification allow significantly different internal combustion engine (ICE) concepts. At AVL, various engine concepts have been investigated and evaluated with respect to the key criteria for a Range Extender application. A Wankel rotary engine concept as well as an inline 2 cylinder gasoline engine turned out to be most promising.
Technical Paper

Pass-By Noise Prediction for Trucks Based on Powertrain Test-Cell Measurements

2001-04-30
2001-01-1564
The paper outlines and discusses the possibilities of a new instrumentation tool for the analysis of engine and gearbox noise radiation and the prediction of pass-by noise from powertrain test cell measurements. Based on a 32 channel data acquisition board, the system is intended to be quick and easy to apply in order to support engineers during their daily work in the test cell. The pass-by prediction is a purely experimental approach with test cell recordings being weighted by measured transfer functions (from the powertrain compartment to the pass-by point).
X