Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Codes and Standards – Global Harmonization

2011-11-18
Career development is no longer something you focus on in your twenties and are set for life, it is ongoing and constant. New technologies, globalization and the world-wide competition for jobs demand that we continue to grow our skills and knowledge throughout our life. This session will provide you with tools to help you meet this demand as an engineering professional. Participants will create a personal mission statement and set career goals, identify the best way to research new opportunities and build their network while also crafting a personal brand with consistent messaging. Organizer Martha Schanno, SAE International Panelist Caryn Mateer, Transformational Leaders Intl. Kathleen Riley, Transformational Leaders Intl.
Video

Technical Keynote - Introduction to EcoCAR The NeXt Challenge Year Three: Vehicle Refinement and Testing

2012-06-06
Selective Catalytic Reduction (SCR) catalysts are used to reduce NOx emissions from internal combustion engines in a variety of applications [1,2,3,4]. Southwest Research Institute (SwRI) performed an Internal Research & Development project to study SCR catalyst thermal deactivation. The study included a V/W/TiO2 formulation, a Cu-zeolite formulation and a Fe-zeolite formulation. This work describes NH3 storage capacity measurement data as a function of aging time and temperature. Addressing one objective of the work, these data can be used in model-based control algorithms to calculate the current NH3 storage capacity of an SCR catalyst operating in the field, based on time and temperature history. The model-based control then uses the calculated value for effective DEF control and prevention of excessive NH3 slip. Addressing a second objective of the work, accelerated thermal aging of SCR catalysts may be achieved by elevating temperatures above normal operating temperatures.
Video

Impact of Technology on Electric Drive Fuel Consumption and Cost

2012-05-25
In support of the U.S Department of Energy's Vehicle Technologies Program, numerous vehicle technology combinations have been simulated using Autonomie. Argonne National Laboratory (Argonne) designed and wrote the Autonomie modeling software to serve as a single tool that could be used to meet the requirements of automotive engineering throughout the development process, from modeling to control, offering the ability to quickly compare the performance and fuel efficiency of numerous powertrain configurations. For this study, a multitude of vehicle technology combinations were simulated for many different vehicles classes and configurations, which included conventional, power split hybrid electric vehicle (HEV), power split plug-in hybrid electric vehicle (PHEV), extended-range EV (E-REV)-capability PHEV, series fuel cell, and battery electric vehicle.
Journal Article

Maximizing Net Present Value of a Series PHEV by Optimizing Battery Size and Vehicle Control Parameters

2010-10-19
2010-01-2310
For a series plug-in hybrid electric vehicle (PHEV), it is critical that batteries be sized to maximize vehicle performance variables, such as fuel efficiency, gasoline savings, and zero emission capability. The wide range of design choices and the cost of prototype vehicles calls for a development process to quickly and systematically determine the design characteristics of the battery pack, including its size, and vehicle-level control parameters that maximize the net present value (NPV) of a vehicle during the planning stage. Argonne National Laboratory has developed Autonomie, a modeling and simulation framework. With support from The MathWorks, Argonne has integrated an optimization algorithm and parallel computing tools to enable the aforementioned development process. This paper presents a study that utilized the development process, where the NPV is the present value of all the future expenses and savings associated with the vehicle.
Journal Article

Impact of Energy Management on the NPV Gasoline Savings of PHEVs

2010-04-12
2010-01-1236
This paper evaluates the impact of energy management strategy on the cost benefits of a plug-in hybrid electric vehicle (PHEV) by taking into account the impact of PHEV energy management on battery life and petroleum displacement over the life of the vehicle. Using Battery in the Loop (BIL), a real battery is subjected to transient power demands by a virtual vehicle. The vehicle energy management strategy is varied, resulting in different battery utilization scenarios. Battery life, which varies with battery utilization, is estimated for the different energy management scenarios. The same representative drive cycle is used over the different energy management strategies to isolate the impact of energy management on battery utilization. PHEV gasoline savings, in comparison to a charge sustaining hybrid, are calculated for each of the energy management strategies, for a fixed distance of 40 miles.
Journal Article

A Preliminary Investigation into the Mitigation of Plug-in Hybrid Electric Vehicle Tailpipe Emissions Through Supervisory Control Methods

2010-04-12
2010-01-1266
Plug-in hybrid electric vehicle (PHEV) technologies have the potential for considerable petroleum consumption reductions, possibly at the expense of increased tailpipe emissions due to multiple “cold” start events and improper use of the engine for PHEV specific operation. PHEVs operate predominantly as electric vehicles (EVs) with intermittent assist from the engine during high power demands. As a consequence, the engine can be subjected to multiple cold start events. These cold start events may have a significant impact on the tailpipe emissions due to degraded catalyst performance and starting the engine under less than ideal conditions. On current hybrid electric vehicles (HEVs), the first cold start of the engine dictates whether or not the vehicle will pass federal emissions tests. PHEV operation compounds this problem due to infrequent, multiple engine cold starts.
Journal Article

Control Analysis under Different Driving Conditions for Peugeot 3008 Hybrid 4

2014-04-01
2014-01-1818
This paper includes analysis results for the control strategy of the Peugeot 3008 Hybrid4, a diesel-electric hybrid vehicle, under different thermal conditions. The analysis was based on testing results obtained under the different thermal conditions in the Advanced Powertrain Research Facility (APRF) at Argonne National Laboratory (ANL). The objectives were to determine the principal concepts of the control strategy for the vehicle at a supervisory level, and to understand the overall system behavior based on the concepts. Control principles for complex systems are generally designed to maximize the performance, and it is a serious challenge to determine these principles without detailed information about the systems. By analyzing the test results obtained in various driving conditions with the Peugeot 3008 Hybrid4, we tried to figure out the supervisory control strategy.
Journal Article

Analyzing the Energy Consumption Variation during Chassis Dynamometer Testing of Conventional, Hybrid Electric, and Battery Electric Vehicles

2014-04-01
2014-01-1805
Production vehicles are commonly characterized and compared using fuel consumption (FC) and electric energy consumption (EC) metrics. Chassis dynamometer testing is a tool used to establish these metrics, and to benchmark the effectiveness of a vehicle's powertrain under numerous testing conditions and environments. Whether the vehicle is undergoing EPA Five-Cycle Fuel Economy (FE), component lifecycle, thermal, or benchmark testing, it is important to identify the vehicle and testing based variations of energy consumption results from these tests to establish the accuracy of the test's results. Traditionally, the uncertainty in vehicle test results is communicated using the variation. With the increasing complexity of vehicle powertrain technology and operation, a fixed energy consumption variation may no longer be a correct assumption.
Journal Article

Impact of Electric Drive Vehicle Technologies on Fuel Efficiency to Support 2017-2025 CAFE Regulations

2014-04-01
2014-01-1084
Manufacturers have been considering various technology options to improve vehicle fuel economy. Some of the most promising technologies are related to vehicle electrification. To evaluate the benefits of vehicle electrification to support the 2017-2025 CAFE regulations, a study was conducted to simulate many of the most common electric drive powertrains currently available on the market: 12V Micro Hybrid Vehicle (start/stop systems), Belt-integrated starter generator (BISG), Crank-integrated starter generator (CISG), Full Hybrid Electric Vehicle (HEV), PHEV with 20-mile all-electric range (AER) (PHEV20), PHEV with 40-mile AER (PHEV40), Fuel-cell HEV and Battery Electric vehicle with 100-mile AER (EV100). Different vehicle classes were also analyzed in the study process: Compact, Midsize, Small SUV, Midsize SUV and Pickup. This paper will show the fuel displacement benefit of each powertrain across vehicle classes.
Journal Article

Comparison of Near-Field Structure and Growth of a Diesel Spray Using Light-Based Optical Microscopy and X-Ray Radiography

2014-04-01
2014-01-1412
A full understanding and characterization of the near-field of diesel sprays is daunting because the dense spray region inhibits most diagnostics. While x-ray diagnostics permit quantification of fuel mass along a line of sight, most laboratories necessarily use simple lighting to characterize the spray spreading angle, using it as an input for CFD modeling, for example. Questions arise as to what is meant by the “boundary” of the spray since liquid fuel concentration is not easily quantified in optical imaging. In this study we seek to establish a relationship between spray boundary obtained via optical diffused backlighting and the fuel concentration derived from tomographic reconstruction of x-ray radiography. Measurements are repeated in different facilities at the same specified operating conditions on the “Spray A” fuel injector of the Engine Combustion Network, which has a nozzle diameter of 90 μm.
Journal Article

X-ray Imaging of Cavitation in Diesel Injectors

2014-04-01
2014-01-1404
Cavitation plays a significant role in high pressure diesel injectors. However, cavitation is difficult to measure under realistic conditions. X-ray phase contrast imaging has been used in the past to study the internal geometry of fuel injectors and the structure of diesel sprays. In this paper we extend the technique to make in-situ measurements of cavitation inside unmodified diesel injectors at pressures of up to 1200 bar through the steel nozzle wall. A cerium contrast agent was added to a diesel surrogate, and the changes in x-ray intensity caused by changes in the fluid density due to cavitation were measured. Without the need to modify the injector for optical access, realistic injection and ambient pressures can be obtained and the effects of realistic nozzle geometries can be investigated. A range of single and multi-hole injectors were studied, both sharp-edged and hydro-ground. Cavitation was observed to increase with higher rail pressures.
Journal Article

Numerical Simulations of Supersonic Diesel Spray Injection and the Induced Shock Waves

2014-04-01
2014-01-1423
Shock waves have been recently observed in high-pressure diesel sprays. In this paper, three-dimensional numerical simulations of supersonic diesel spray injection have been performed to investigate the underlying dynamics of the induced shock waves and their interactions with the spray. A Volume-of-Fluid based method in the CFD software (CONVERGE) is used to model this multiphase phenomena. An adaptive Mesh Refinement (AMR) scheme is employed to capture the front of the spray and the shock waves with high fidelity. Simulation results are compared to the available experimental observations to validate the numerical procedure. Parametric studies with different injection and ambient conditions are conducted to examine the effect of these factors on the generation of shock waves and their dynamics.
Technical Paper

An Analytical Energy-budget Model for Diesel Droplet Impingement on an Inclined Solid Wall

2020-04-14
2020-01-1158
The study of spray-wall interaction is of great importance to understand the dynamics that occur during fuel impingement onto the chamber wall or piston surfaces in internal combustion engines. It is found that the maximum spreading length of an impinged droplet can provide a quantitative estimation of heat transfer and energy transformation for spray-wall interaction. Furthermore, it influences the air-fuel mixing and hydrocarbon and particle emissions at combusting conditions. In this paper, an analytical model of a single diesel droplet impinging on the wall with different inclined angles (α) is developed in terms of βm (dimensionless maximum spreading length, the ratio of maximum spreading length to initial droplet diameter) to understand the detailed impinging dynamic process.
Journal Article

Real-World Thermal Effects on Wheel Assembly Efficiency of Conventional and Electric Vehicles

2016-04-05
2016-01-0236
It is widely understood that cold ambient temperatures negatively impact vehicle system efficiency. This is due to a combination of factors: increased friction (engine oil, transmission, and driveline viscous effects), cold start enrichment, heat transfer, and air density variations. Although the science of quantifying steady-state vehicle component efficiency is mature, transient component efficiencies over dynamic ambient real-world conditions is less understood and quantified. This work characterizes wheel assembly efficiencies of a conventional and electric vehicle over a wide range of ambient conditions. For this work, the wheel assembly is defined as the tire side axle spline, spline housing, bearings, brakes, and tires. Dynamometer testing over hot and cold ambient temperatures was conducted with a conventional and electric vehicle instrumented to determine the output energy losses of the wheel assembly in proportion to the input energy of the half-shafts.
Journal Article

CFD-Guided Heavy Duty Mixing-Controlled Combustion System Optimization with a Gasoline-Like Fuel

2017-03-28
2017-01-0550
A computational fluid dynamics (CFD) guided combustion system optimization was conducted for a heavy-duty compression-ignition engine with a gasoline-like fuel that has an anti-knock index (AKI) of 58. The primary goal was to design an optimized combustion system utilizing the high volatility and low sooting tendency of the fuel for improved fuel efficiency with minimal hardware modifications to the engine. The CFD model predictions were first validated against experimental results generated using the stock engine hardware. A comprehensive design of experiments (DoE) study was performed at different operating conditions on a world-leading supercomputer, MIRA at Argonne National Laboratory, to accelerate the development of an optimized fuel-efficiency focused design while maintaining the engine-out NOx and soot emissions levels of the baseline production engine.
Journal Article

A Machine Learning-Genetic Algorithm (ML-GA) Approach for Rapid Optimization Using High-Performance Computing

2018-04-03
2018-01-0190
A Machine Learning-Genetic Algorithm (ML-GA) approach was developed to virtually discover optimum designs using training data generated from multi-dimensional simulations. Machine learning (ML) presents a pathway to transform complex physical processes that occur in a combustion engine into compact informational processes. In the present work, a total of over 2000 sector-mesh computational fluid dynamics (CFD) simulations of a heavy-duty engine were performed. These were run concurrently on a supercomputer to reduce overall turnaround time. The engine being optimized was run on a low-octane (RON70) gasoline fuel under partially premixed compression ignition (PPCI) mode. A total of nine input parameters were varied, and the CFD simulation cases were generated by randomly sampling points from this nine-dimensional input space. These input parameters included fuel injection strategy, injector design, and various in-cylinder flow and thermodynamic conditions at intake valve closure (IVC).
Journal Article

X-Ray Radiography Measurements of the Thermal Energy in Spark Ignition Plasma at Variable Ambient Conditions

2017-09-04
2017-24-0178
The sparking behavior in an internal combustion engine affects the fuel efficiency, engine-out emissions, and general drivability of a vehicle. As emissions regulations become progressively stringent, combustion strategies, including exhaust gas recirculation (EGR), lean-burn, and turbocharging are receiving increasing attention as models of higher efficiency advanced combustion engines with reduced emissions levels. Because these new strategies affect the working environment of the spark plug, ongoing research strives to understand the influence of external factors on the spark ignition process. Due to the short time and length scales involved and the harsh environment, experimental quantification of the deposited energy from the sparking event is difficult to obtain. In this paper, we present the results of x-ray radiography measurements of spark ignition plasma generated by a conventional spark plug.
Technical Paper

Experimental Evaluation of Longitudinal Control for Automated Vehicles through Vehicle-in-the-Loop Testing

2020-04-14
2020-01-0714
Automated driving functionalities delivered through Advanced Driver Assistance System (ADAS) have been adopted more and more frequently in consumer vehicles. The development and implementation of such functionalities pose new challenges in safety and functional testing and the associated validations, due primarily to their high demands on facility and infrastructure. This paper presents a rather unique Vehicle-in-the-Loop (VIL) test setup and methodology compared those previously reported, by combining the advantages of the hardware-in-the-loop (HIL) and traditional chassis dynamometer test cell in place of on-road testing, with a multi-agent real-time simulator for the rest of test environment.
Technical Paper

Numerical Evaluation of Gasoline Compression Ignition at Cold Conditions in a Heavy-Duty Diesel Engine

2020-04-14
2020-01-0778
Achieving robust ignitability for compression ignition of diesel engines at cold conditions is traditionally challenging due to insufficient fuel vaporization, heavy wall impingement, and thick wall films. Gasoline compression ignition (GCI) has shown the potential to offer an enhanced NOx-particulate matter tradeoff with diesel-like fuel efficiency, but it is unknown how the volatility and reactivity of the fuel will affect ignition under very cold conditions. Therefore, it is important to investigate the impact of fuel physical and chemical properties on ignition under pressures and temperatures relevant to practical engine operating conditions during cold weather. In this paper, 0-D and 3-D computational fluid dynamics (CFD) simulations of GCI combustion at cold conditions were performed.
Journal Article

Fabrication and Characterization of Micro-Orifices for Diesel Fuel Injectors

2008-06-23
2008-01-1595
Stringent emission standards are driving the development of diesel-fuel injection concepts to mitigate in-cylinder formation of particulates. While research has demonstrated significant reduction in particulate formation using micro-orifice technology, implementation requires development of industrial processes to fabricate micro-orifices with diameters as low as 50 μm and with large length-to-diameter ratios. This paper reviews the different processes being pursued to fabricate micro-orifices and the advanced techniques applied to characterize the performance of micro-orifices. The latter include the use of phase-contrast x-ray imaging of electroless nickel-plated micro-orifices and laser imaging of fuel sprays at elevated pressures. The experimental results demonstrate an industrially viable process to create small uniform orifices that improve spray formation for fuel injection.
X