Refine Your Search

Topic

Author

Search Results

Journal Article

Simulation of Underbody Contribution of Wind Noise in a Passenger Automobile

2013-05-13
2013-01-1932
Wind noise is a significant source of interior noise in automobiles at cruising conditions, potentially creating dissatisfaction with vehicle quality. While wind noise contributions at higher frequencies usually originate with transmission through greenhouse panels and sealing, the contribution coming from the underbody area often dominates the interior noise spectrum at lower frequencies. Continued pressure to reduce fuel consumption in new designs is causing more emphasis on aerodynamic performance, to reduce drag by careful management of underbody airflow at cruise. Simulation of this airflow by Computational Fluid Dynamics (CFD) tools allows early optimization of underbody shapes before expensive hardware prototypes are feasible. By combining unsteady CFD-predicted loads on the underbody panels with a structural acoustic model of the vehicle, underbody wind noise transmission could be considered in the early design phases.
Technical Paper

BMW High Precision Fuel Injectionin Conjunction with Twin-Turbo Technology: a Combination for Maximum Dynamic and High Fuel Efficiency

2007-04-16
2007-01-1560
The new inline six cylinder Twin-Turbo gasoline engine forms the pinnacle of BMW's wide range of straight-six power units, developing maximum output of 300hp and a peak torque of 300 lb-ft with a displacement of 3.0 litre. Using two turbochargers in combination with the new BMW High Precision Fuel Injection leads to a responsive build-up of torque and to an impressive development of power over a wide engine speed range. This paper gives a detailed overview of the turbocharger-and the injection system and describes the effect of both systems on power and torque, as well as on fuel consumption and emission. The big advantage of using two small turbochargers is their low moment of inertia, even the slightest movement of the accelerator pedal by the driver's foot serving to immediately build up superior pressure and power. This puts an end to the turbo “gap” previously typical of a turbocharged power unit.
Technical Paper

Process Modeling in the Life Cycle Design - Environmental Modeling of Joining Technologies within the Automotive Industry -

1998-11-30
982190
For integrating Life Cycle Assessment into the design process it is more and more necessary to generate models of single life cycle steps respectively manufacturing processes. For that reason it is indispensable to develop parametric processes. With such disposed processes the aim could only be to provide a tool where parametric environmental process models are available for a designer. With such a tool and the included models a designer will have the possibility to make an estimation of the probable energy consumption and needed additive materials for the applied manufacturing technology. Likewise if he has from the technical point of view the opportunity, he can shift the applied joining technology in the design phase by changing for instance the design.
Technical Paper

Influence of Injection Nozzle Hole Diameter on Highly Premixed and Low Temperature Diesel Combustion and Full Load Behavior

2010-10-25
2010-01-2109
Diesel engines face difficult challenges with respect to engine-out emissions, efficiency and power density as the legal requirements concerning emissions and fuel consumption are constantly increasing. In general, for a diesel engine to achieve low raw emissions a well-mixed fuel-air mixture, burning at low combustion temperatures, is necessary. Highly premixed diesel combustion is a feasible way to reduce the smoke emissions to very low levels compared to conventional diesel combustion. In order to reach both, very low NOX and soot emissions, high rates of cooled EGR are necessary. With high rates of cooled EGR the NOX formation can be suppressed almost completely. This paper investigates to what extent the trade-off between emissions, fuel consumption and power of a diesel engine can be resolved by highly premixed and low temperature diesel combustion using injection nozzles with reduced injection hole diameters and high pressure fuel injection.
Technical Paper

Multicore vs Safety

2010-04-12
2010-01-0207
It is the beginning of a new age: multicore technology from the PC desktop market is now also hitting the automotive domain after several years of maturation. New microcontrollers with two or more main processing cores have been announced to provide the next step change in available computing power while keeping costs and power consumption at a reasonable level. These new multicore devices should not be confused with the specialized safety microcontrollers using two redundant cores to detect possible hardware failures which are already available. Nor should they be confused with the heterogeneous multicore solutions employing an additional support core to offload a single main processing core from real-time tasks (e.g. handling peripherals).
Technical Paper

Developing Planar Laser-Induced Fluorescence for the Investigation of the Mixture Formation Process in Hydrogen Engines

2004-03-08
2004-01-1408
Planar laser-induced fluorescence (PLIF) has been successfully used for the investigation of the mixture formation process in hydrogen engines. Detailed information has been obtained about the process development (qualitative measurements) and on the fuel/air-ratio (quantitative measurements) in the combustion chamber. These results can be used for further optimization of the mixture formation and the combustion process concerning emissions and fuel consumption. The measurement technique used here is not limited to hydrogen and can also be applied to other fuel gases like natural gas. The main topic of this paper is the experimental verification of the PLIF data by simultaneous Raman scattering measurements. By Raman scattering the fuel/air-ratio can directly be determined from the direct concentration measurements of the different gas species.
Technical Paper

First ULEV Turbo Gasoline Engine - The Audi 1.8 l 125 kW 5-Valve Turbo

2001-03-05
2001-01-1350
In an age when there is growing tension between customer expectations of high engine performance, low fuel consumption and compliance with the legal requirements on the emission of airborne pollution, the ability of a vehicle to meet the most stringent emission standards is becoming an increasingly important aspect of its market appeal. The 1.8 l, 5-valve turbo engine which Audi launched in 1994 represented an emissions concept which, thanks to its innovative close-coupled catalytic converter, provided an ideal basis for further development to an engine meeting the US ULEV emission standard, as the current engine does [1]. Its configuration as a ULEV concept necessitated the blanket optimisation of all components which influence the exhaust emissions. The pistons and injectors were improved in order to reduce untreated emissions.
Technical Paper

Development and Application of a New Mass Spectrometer Based Measurement System for Fast Online Monitoring of Oil Emission in the Raw Exhaust Gas of Combustion Engines

2002-10-21
2002-01-2713
An increasing environmental consciousness as well as the awareness for sustained preservation of natural resources causes new regulations for emissions and great efforts for fuel economy and increasing oil service intervals. For a better understanding of the process generating pollutants, the emissions of every phase of the combustion cycle have to be monitored online. Moreover, it is important to measure the raw exhaust gas during different driving cycles and investigate the influence of different parameters as for example changing engine operating conditions. The new mass spectrometer (MS) based measurement system allows the direct detection of unburned gaseous oil HC without tracers. The gas inlet system enables crank angle resolved monitoring of different raw exhaust gas compounds in the exhaust manifold or directly in the cylinder.
Technical Paper

Aerodynamic Performance Assessment of BMW Validation Models using Computational Fluid Dynamics

2012-04-16
2012-01-0297
Aerodynamic performance assessment of automotive shapes is typically performed in wind tunnels. However, with the rapid progress in computer hardware technology and the maturity and accuracy of Computational Fluid Dynamics (CFD) software packages, evaluation of the production-level automotive shapes using a digital process has become a reality. As the time to market shrinks, automakers are adopting a digital design process for vehicle development. This has elevated the accuracy requirements on the flow simulation software, so that it can be used effectively in the production environment. Evaluation of aerodynamic performance covers prediction of the aerodynamic coefficients such as drag, lift, side force and also lift balance between the front and rear axle. Drag prediction accuracy is important for meeting fuel efficiency targets, prediction of front and rear lifts as well as side force and yawing moment are crucial for high speed handling.
Technical Paper

Potentials of Phlegmatization in Diesel Hybrid Electric Vehicles

2011-06-09
2011-37-0018
An approach for model-based control strategy design for diesel hybrid drive-trains has been developed, permitting the reduction of fuel consumption as well as of exhaust gas emissions. The control strategy consists of four core-functions: the SOC-management, the operation mode determination, the gear selection, and the thermal monitoring. Based on those different interpretations, a control strategy can be designed that leads to great reductions in fuel consumption or alternatively to a mentionable decline of nitrous oxides. In this trade-off, both aims can not be optimized at a time. Though, the strategy to be used is a compromise, designs for control strategies are possible that reduce both for a significant amount. Extending this control strategy by adding functions for transient behavior at start-up and load changes; phlegmatization enables additional potentials for emission reduction.
Technical Paper

“Living and Mobility” - Minimization of the Overall Energy Consumption by Using Synergetic Effects and Predictive Information

2012-04-16
2012-01-0496
Issues relating to the reduction of CO₂ emissions and energy consumption are currently more important than ever before. In the construction engineering and automotive sectors research and development efforts are focused closely on efficient buildings and automobiles. The designated target is a reduction in greenhouse gas emissions and overall energy demand. However, almost all approaches focus solely on either "buildings" or "mobility." By considering both aspects as a single holistic system, further energy saving potential arises due to synergetic effects. The goal of current research projects relating to Smart Homes and Vehicle to Building (V2B) is to smooth the electrical load profile on a household level rather than to reduce the individual-related total energy consumption and thereby the CO₂ emissions.
Technical Paper

Active Noise Control for the 4.0 TFSI with Cylinder on Demand Technology in Audi's S-Series

2012-06-13
2012-01-1533
To significantly increase fuel efficiency while keeping power and performance of its signature S models, AUDI developed a new 4.0 TFSI engine with Cylinder on Demand technology and introduced it with its new S6, S7 and S8 models. To manage upcoming NVH issues due to this new technology and keep the intended sporty V8 note of the engine under all operating conditions, a broad range of new and advanced technologies was introduced with these vehicles. This paper focusses on the Active Noise Control system and its development. It describes the ANC system from a control theory perspective in addition to the acoustical perspective. Special features of the system include the availability of multiple tunings (4/8 cylinder mode) to support the specific overall sound character and the fast switching process as switching between different cylinder configurations might be as fast as 300 ms. In addition, the system also includes specific features that allow an advanced audio system diagnosis.
Technical Paper

Model-Predictive Energy Management for the Integration of Plug-In-Hybrid Electric Vehicles into Building Energy Systems

2013-04-08
2013-01-1443
In current research projects such as "Vehicle to Grid" (V2G), "Vehicle to Building" (V2B) or "Vehicle to Home" (V2H), plug-in vehicles are integrated into stationary energy systems. V2B or V2H therefore stands for intelligent networking between vehicles and buildings. However, in these projects the objective is mostly from a pure electric point of view, to smooth the load profile on a household level by optimized charging and discharging of electric vehicles. In the present paper a small energy system of this kind, consisting of a building and a vehicle, is investigated from a holistic point of view. Thermal as well as electrical system components are taken into account and there is a focus on reduction of overall energy consumption and CO₂ emissions. A predictive energy management is presented that coordinates the integration of a plug-in hybrid electric vehicle into the energy systems of a building. System operation is optimized in terms of energy consumption and CO₂ emissions.
Technical Paper

Potentials of the Spray-Guided BMW DI Combustion System

2006-04-03
2006-01-1265
The spray-guided BMW DI combustion system eliminates the most important disadvantages of the wall-and air-guided 1st generation DI combustion systems. With its central injector position, the spray-guided system provides a stratified mixture at the spark plug and reduces wall wetting significantly. The low spray penetration and high spray stability of the outward-opening piezo injector allow an extension of the stratified engine map to higher engine load and speed. The piezo drive permits an extremely fast opening of the injector needle, thus enabling multiple injections with very short delay times and high flexibility for the calibration strategy to supply a very efficient combustion with low unburnt hydrocarbon and carbon monoxide emissions. Compared to a conventional throttled SI engine, the spray-guided system shows a fuel consumption potential of about 20% in the NEDC.
Technical Paper

A Systematic Analysis of CO2-Reduction by an Optimized Heat Supply during Vehicle Warm-up

2006-04-03
2006-01-1450
A transient 1D-network simulation model of the relevant power train components and fluid circuits of a state-of-the art passenger car has been developed, including engine, gearbox, coolant, motor oil and gearbox oil circuit. A system analysis was conducted to identify the subsystems of the vehicle where thermal intervention was expected to have major influence on fuel consumption during warm-up. Variable heat flows have been applied to those subsystems in the simulation model and their influence on the NEDC fuel consumption has been evaluated. The results show the potential fuel reduction effects of heat management measures on the respective system components with a special emphasis on the component interaction. A sensitivity study of variable heat distribution among the subsystems of the vehicle shows the optimization potentials of heat management measures. The results from the numerical simulation have been validated in an experimental setup.
Technical Paper

Light Weight Engine Construction through Extended and Sustainable Use of Mg-Alloys

2006-04-03
2006-01-0068
Eight partners from Europe and one from North America have joined efforts in a EU-supported project to find new ways for sustainable production of Mg-based engine blocks for cars. The ultimate aim of the work is to reduce vehicle weight, thereby reducing fuel consumption and CO2 emissions from operation of the vehicle. Four new magnesium alloys are considered in the project and an engine block has been series cast - 20 each in two alloys. An extensive mechanical testing program has been initiated to identify in particular the high temperature limits of the four alloys and a significant experimental study of proper bolt materials for joining is being done in parallel. Engine redesign and life cycle analysis has also been completed to secure the future sustainable exploitation of the project results. This paper presents an overview of the work and results obtained until now - 3 months before the ending date of the project.
Technical Paper

BMW's Energy Strategy - Promoting the Technical and Political Implementation

2000-03-06
2000-01-1324
BMW can look back on 20 years of research activities on hydrogen propulsion systems. Hydrogen fuel is the only means of offering pure driving pleasure on the basis of a sustainable energy loop. As the hydrogen era is still quite a while away the BMW Energy Strategy „Via Natural Gas to Hydrogen” has been developed. The first step was to build series-production compressed natural gas (CNG) cars back in 1995. By switching to liquefied natural gas (LNG) not only is the cruising range tripled but technologically the final stepping-stone is reached in preparing the way for liquefied hydrogen. BMW's automotive and drive technology for hydrogen is now available and ready to move out of the laboratory on to the road. At Munich Airport a BMW „Clean Energy” car is already providing shuttle services. Its fuel is supplied by the world's first public filling station for liquefied hydrogen.
Technical Paper

The Third Generation of Valvetrains - New Fully Variable Valvetrains for Throttle-Free Load Control

2000-03-06
2000-01-1227
The SI-engine has a disadvantage in fuel economy compared with a DI-Diesel engine. One of the major effects is the throttle-driven load control with its pumping losses. The main target is to reduce these losses in the thermodynamic process with a throttle-free load control. BMW has developed fully variable valve trains as a possible technical solution to realise a load control by regulating the valve lift and the closing time of the inlet valve. The essential variability can be achieved by fully variable mechanical valve trains or mechatronic systems both showing a robust running behavior in emissions and cyclic fluctuations. The camshaft driven mechanical system is based on the technology of the BMW Double-VANOS system. An additional variability makes it possible to shift the valve lift continuously in order to control the valve closing. The highest variability is given by a system with each valve being controlled seperatly.
Technical Paper

Research Results and Progress in LeaNOx II -A Co-operation for Lean NOx Abatement

2000-10-16
2000-01-2909
In a consortium of European industrial partners and research institutes, a combination of industrial development and scientific research was organised. The objective was to improve the catalytic NOx conversion for lean burn cars and heavy-duty trucks, taking into account boundary conditions for the fuel consumption. The project lasted for three years. During this period parallel research was conducted in research areas ranging from basic research based on a theoretical approach to full scale emission system development. NOx storage catalysts became a central part of the project. Catalysts were evaluated with respect to resistance towards sulphur poisoning. It was concluded that very low sulphur fuel is a necessity for efficient use of NOx trap technology. Additionally, attempts were made to develop methods for reactivating poisoned catalysts. Methods for short distance mixing were developed for the addition of reducing agent.
Technical Paper

Fuel Cell Auxiliary Power Unit - Innovation for the Electric Supply of Passenger Cars ?

2000-03-06
2000-01-0374
The first application in which the fuel cell will find a market in the passenger car is as an “electrochemical battery” serving the purpose the fuel cell can do best: To generate electricity for the electrical power bus with a high degree of efficiency. Such a fuel cell referred to as an APU (Auxiliary Power Unit) exceeds the power output and endurance of a battery and is able not only to supply power to all conventional electrical power-consuming items in the car, but also to provide new functions such as air conditioning when the car is at a standstill. In the long run, indeed, the fuel cell may even be able to replace the electrical alternator.
X