Refine Your Search

Topic

Search Results

Technical Paper

Development of Systematic Technique for Design of Electric Motor Mounting System in EV/ HEV Application

2021-09-22
2021-26-0165
Last decade has been era of environmental awareness. Various programs have launched for making devices and appliances eco-friendly. This initiative has lead automobile industry toward hybridization and now total electrification of vehicles. As electric motor is being added to automobile as a prime mover, due to high frequency vibrations along with higher torque electric motor needs to be isolated properly & carefully as this vibration can damage other automobile parts. Dynamic response of electric motor is different from response of IC engines, so use of engine mounting design method may not be suitable for designing mounting system for electric motor. First, both 4- point and 3- point mounting system are considered for analytical and experimental investigation of force and displacement transmissibility. Position and orientation of elastomeric mounts plays important role in design of mounting system for electric motor.
Technical Paper

Evaluation of Cable Harness of an Electric Vehicle Powertrain through Simulation

2021-09-22
2021-26-0350
The Electric Vehicles (EV) or Hybrid Electric Vehicle (HEV) has a bunch of electrical/electronic components and its operation give rise to complicated EMI/EMC issues. The Power Electronics Module (PEM), comprising of DC-DC convertor/invertor and Battery Management Unit (BMU), is driving the motor to propel the vehicle. “Battery Pack Module” powers these units through cables. The fast switching of these circuit elements present in the system leads to noise propagation through the cables. These noise signals give rise to various Electromagnetic (EM) related issues in the cable harness of vehicle. It is essential that these cables should not interfere with other electronic components and also does not get effected by external EM disturbances.
Technical Paper

Development of In-house Competency to Build Compact Gerotor Oil Pump for High Speed Diesel Engine Application

2013-11-27
2013-01-2738
Gerotor pump is a positive displacement pump unit which is widely used for lubrication in on-road and off-road engine applications. This paper is focused on Gerotor pump design competency established at ARAI comprising of design of inner and outer rotors, suction & delivery ports, optimizing inlet and outlet diameters & its position, development of methodology to calculate oil flow rate, volumetric efficiency, mechanical efficiency & slippage. The finalization of design is followed by CFD of Gerotor pump to optimize the pressure and flow pulsation. A trochoidal profile is used to design the inner and outer rotors and its conjugate profile are realized by a set of equations using a method based on the theory of gearing. Suction and delivery port is analytically designed based on the same design parameters of the trochoidal profile.
Technical Paper

Dynamic Simulation of 6 Speed Gearbox of Tipper Application to Improve Gear Contact Life

2017-01-10
2017-26-0060
The function of the automotive transmission is to reliably transmit torque and motion between engine and wheels at acceptable levels of noise, vibration and desired life. Gear drive components most commonly subject to distress are the gears, shafts, bearings and seals. The variables in the entire power-system, such as vibration, misalignment, type of lubricant used, material properties, operating temperature and abuse are considered as the main root causes for the gear failures. The bending and contact strength of the gear tooth are considered to be one of the main contributors for the failure of the gear in a gear set. Thus, Heartzian stress analysis has become popular as an area of research on gears to minimize or to reduce the failures of gears. In this research work, one of the major field issues related to 1st gear and reverse gear pitting at very low life for 6 speed manual transmission for mining/ quarry application is studied.
Technical Paper

Simulation Based Design and Development of Test Track for ADAS Functions Validation and Verification with Respect to Indian Scenario

2019-01-09
2019-26-0100
Autonomous vehicles perform various functions with their own control strategies. Functions like Lane Departure Warning (LDW), Lane Keeping system (LKS) and Forward Collision Warning System (FCWS) requires special test tracks for their verification and validation. These test track requirements change with region to region according to available infrastructure. This paper deals with the design and development of test tracks for different ADAS functions verification and validation of Indian specific scenarios and its simulation in IPG CarMaker. The test track conceptualization has been done through the understanding and study of different international standards and geometry of test tracks for Indian conditions have been developed. IPG CarMaker software tool is used for creation of test track, and same track is used for simulation of above ADAS functions in IPG CarMaker.
Technical Paper

Design and Development of Tunable Exhaust Muffler for Race Car

2016-02-01
2016-28-0193
The Exhaust Noise is one of the major noise pollutants. It is well-known that for higher noise reduction, the engine has to bear high back pressure. For a race car, back-pressure plays a major role in engine's performance characteristics. For a given condition of engine rpm & load, conventional muffler has a fixed value of back-pressure and noise attenuation. Better acceleration requires low back-pressure, but the exhaust noise should also be less than the required (Norm) value (110 dBA). This contradicting condition is achieved here by using a ‘Butterfly Valve’ in this novel exhaust muffler. The butterfly valve assumes 2 positions i.e. fully open & fully closed. When the valve is fully closed, the noise reduction will be higher, but the back-pressure will also shoot up. When open, noise reduction will be less and so the back-pressure. So, when better performance is required, the valve is opened and back-pressure is reduced. The muffler is designed for a 4 cylinder 600 cc engine.
Technical Paper

A Study to Address the Failure Mechanism of the Conventional 3-Point Restraint in Protecting the Far Side Occupant in a Rollover Accident

2015-01-14
2015-26-0161
Occupant motion in a vehicle rollover accident is a function of many factors. Some important ones are vehicle kinematics, position of the occupant in the vehicle, occupant size, ground topology and restraint usage. The far side belted occupants are more vulnerable than the near side occupants in a rollover accident as they have more energy as a result of their trailing and higher side of the vehicle. This outcome is attributable to the inadequate safety performance of the conventional single loop; B-pillar mounted D-ring restraints. Roof crush tends to displace the vehicle's B-pillar, resulting in D-Ring displacement which causes slack in the lap portion of the restraint. This slack enables centrifugal loads to move the far side occupant further away from the vehicle's instantaneous point of rotation. In this scenario, the presence of any ejection portal can result in an occupant becoming partially or fully ejected.
Technical Paper

Implementation of Karakuri Kaizen in Material Handling Unit

2015-01-14
2015-26-0074
Material handling is a major section in all the industries especially for delicate and huge components. Here in this industry they are using pneumatics system to tilt the component for certain angle so that operator will be able to do the further operation in the line. Pneumatic system needs compressed air for running the system, which in turn requires electricity to compress the air using an air compressor. Due to frequent power shutdowns many industries are facing problem to run their manufacturing unit peacefully. As an alternate they are using generators which require fuel to generate power. This adds excess cost for manufacturing the products and demand for fuel is also increasing day by day. So to avoid all this problem with a one step solution, dependability of energy resources has to be minimized. For avoiding the usage of energy resources the usage of pneumatics and compressed air has to be reduced.
Technical Paper

Synthesis and Characterization of Nickel and Ni-TiO2 Nanocomposite Coatings Processed by Pulse Electro-deposition Technique

2015-01-14
2015-26-0060
Nickel electroplating is commonly used with substrates including steel, aluminum, plastic and zinc die-cast parts because of its high resistance to temperature, corrosion and wear in harsh conditions. To further enhance its tribological and mechanical properties, research works are going on to produce nano-reinforced composites of Ni with various ceramic and rare earth oxides like CeO2, ZrSiO4, SiC, TiO2, etc. The aim of present work is synthesis and characterization of Ni films and Ni based TiO2 nano-composite coating processed by pulse co-electrodeposition technique. Also, to investigate the various properties such as mechanical, wear and corrosion resistance, conductivity & thermal stability of Ni-TiO2 nanocomposites electrodeposited on steel substrate, especially the effects of the amount of nanosized TiO2 particles in Ni-TiO2 nanocomposites.
Technical Paper

Design and Optimization of Crash-Box of Passenger Vehicle to Enhance Energy Absorption

2019-03-25
2019-01-1435
Frontal crash is the most common type of accidents in passenger vehicles which results in severe injuries or fatalities. During frontal crash, some frontal vehicle body has plastic deformation and absorbs impact energy. Hence vehicle crashworthiness is important consideration for safety aspect. The crash box is one of the most important parts in vehicle frontal structure assembly which absorb crash energy during impact. In case of frontal crash accident, crash box is expected to be collapsed by absorbing crash energy prior to the other parts so that the damage to the main cabin frame and occupant injury can be minimized. The main objective of this work is to design and optimize the crash box of passenger vehicle to enhance energy absorption. The modeling of the crash box is done in CATIA V5 and simulations are carried out by using ANSYS. The results show significant improvement in the energy absorption with new design of the crash box and it is validated experimentally on UTM.
Technical Paper

Prediction of Thermal Comfort Inside a Midibus Passenger Cabin Using CFD and Its Experimental Validation

2015-01-14
2015-26-0210
This paper presents a methodology for predicting thermal comfort inside Midibus cabin with an objective to modify the Heating, Ventilation and Air Conditioning (HVAC) duct design and parametric optimization in order to have improved thermal comfort of occupant. For this purpose the bus cavity is extracted from baseline CAD model including fully seated manikins with various seating positions. Solar Load has been considered in the computational model and passenger heat load is considered as per BSR/ASHRAE 55-1992R standard. CFD simulation predicted the air temperature and velocity distribution inside passenger cabin of the baseline model. The experimental measurements have been carried out as per the guidelines set in APTA-BT-RP-003-07 standard. The results obtained from CFD and Experimental test were analysed as per EVS EN ISO7730 standard and calculated occupant comfort in terms of thermal comfort parameters like Predicted Mean Vote (PMV) and Predicted Percentage Dissatisfied (PPD).
Technical Paper

A Novel Method for Active Vibration Control of Steering Wheel

2019-01-09
2019-26-0180
Active control mainly comprises of three parts; sensor-detects the input disturbance, actuator -provide counter measures and control logic -processing of input disturbances and converting it into logical output. Lot of methods for active vibration control are available but this paper deals with active control of steering wheel vibrations of an LCV. A steering wheel is, one such component that directly transfers vibration to the driver. Active technique described here is implemented using accelerometer sensor, IMA (Inertial Mass Actuator) and feed forward Fx-LMS (Filtered reference Least Mean Square) control algorithm. IMA is a single-degree-of-freedom oscillator. To enable a control, IMA needs to be coupled to the structure at a single point, acting as an add-on to the passive system. Fx-LMS is a type of adaptive algorithm which is computationally simple and it also includes compensation for secondary path effects by using an estimate of the secondary path.
Technical Paper

Quick Analysis of Elemental Composition of Automotive Materials Using Non-destructive Technique

2023-05-25
2023-28-1327
Energy dispersive X-ray fluorescence (EDXRF) analysis have made it possible to conduct elemental analysis on a variety of fields, including those with environmental, automotive, geological, chemical, pharmaceutical, archaeology, and biological origins. The ability of EDXRF to deliver quick, non-destructive, and multi-elemental analytical findings with increased sensitivity is of great importance. It is a vital tool for quality control and quality assurance applications. Thus, EDXRF plays an important role to compare batch-to-batch products for meeting quality standards. This paper presents application of EDXRF as an effective tool for quick qualitative and quantitative evaluation of given samples.
Technical Paper

Design and Development of Control Strategy for Adaptive Front-Lighting System Suitable for Indian Road and Traffic Conditions

2017-01-10
2017-26-0007
In year 2015, 17 people were killed every hour by road accidents in India [1]. The occurrence of road accidents is observed to be higher during night, when visibility is at its lowest. The two factors which affect visibility are insufficient illumination and glare caused by the oncoming traffic. The Adaptive Front Lighting System [AFS] is an active safety feature which addresses these problems by employing specific lighting modes for Town, Country, Expressway conditions and automatic switching between Driving Beam and Passing Beam whenever required. Matrix of LEDs or a Projector with an actuator or a combination of both is employed in achieving different Lighting modes. The projector based AFS module is preferred for implementing the AFS control logic for passing beam owing to its economic cost.
Technical Paper

Cost Effective Emergency Intimation System Design for Automobiles

2015-01-14
2015-26-0005
The death toll due to traffic accidents in India is on a rise, according to the latest Road Transport ministry report, a total of 4.97 lakh road accident was reported in 2011. Though compared to 2010, the accidents have gone down by 1,945, the number of deaths at 1,42,485 has increased by over 7,000.[1] This paper proposes a design of an Emergency Intimation System (EIS) tailored to fit for Indian consumer needs and available infrastructure. EIS is an emergency alert technology devised to assist drivers and passenger in an event of vehicle crash. Majority of deaths are caused by slow accident response time. EIS is aimed to lower this response time and ensure that the required rescue and medical services are made available in time. This device employed to make this emergency alerts will be fitted into the vehicle Electrical and Electronics (E/E) architecture and will have interfaces with crash sensor network, CAN network and GSM etc.
Technical Paper

Regulatory Trends for Enhancement of Road Safety

2024-01-16
2024-26-0165
India is one of the largest markets for the automobile sector and considering the trends of road fatalities and injuries related to road accidents, it is pertinent to continuously review the safety regulations and introduce standards which promise enhanced safety. With this objective, various Advanced Driver Assistance Systems (ADAS) regulations are proposed to be introduced in the Indian market. ADAS such as, Anti-lock Braking Systems, Advanced Emergency Braking systems, Lane Departure Warning Systems, Auto Lane Correction Systems, Driver Drowsiness Monitoring Systems, etc., assist the driver during driving. They tend to reduce road accidents and related fatalities by their advanced and artificial intelligent fed programs. This paper will share an insight on the past, recent trends and the upcoming developments in the regulation domain with respect to safety.
Technical Paper

Framework for the Verification & Validation (V&V) of Advanced Driver Assistance Systems

2024-01-16
2024-26-0022
Autonomous Emergency Braking (AEB) systems play a critical role in ensuring vehicle safety by detecting potential rear-end collisions and automatically applying brakes to mitigate or prevent accidents. This paper focuses on establishing a framework for the Verification & Validation (V&V) of Advanced Driver Assistance Systems (ADAS) by testing & verifying the functionality of a RADAR-based AEB ECU. A comprehensive V&V approach was adopted, incorporating both virtual and physical testing. For virtual testing, closed-loop Hardware-in-Loop (HIL) simulation technique was employed. The AEB ECU was interfaced with the real-time hardware via CAN. Data for the relevant target such as the target position, velocity etc. was calculated using an ideal RADAR sensor model running on the real-time hardware. The methodology involved conducting a series of test scenarios, including various driving speeds, obstacle types, and braking distances.
Technical Paper

Synthetic Scenario Generation from Real Road Data for Indian Specific ADAS Function Verification and Validation

2024-01-16
2024-26-0020
Advanced Driver Assistance Systems (ADAS) play a crucial role in enhancing road safety by providing intelligent assistance to drivers. To ensure the reliability and effectiveness of ADAS functions, rigorous verification and validation processes are necessary. One critical aspect of this process is scenario generation, which involves creating diverse and representative driving scenarios for testing and evaluating ADAS functions. This paper proposes a novel approach for synthetic scenario generation specifically tailored for Indian road conditions. The approach leverages real-time road data collected from various sources, including camera sensors, Lidar sensor, GPS devices, and traffic monitoring systems. The collected data is processed and analyzed to extract relevant information, such as road geometries, traffic patterns, and environmental conditions.
Technical Paper

Importance of Pole Side Impact Test for Assessment of Curtain Airbags

2024-01-16
2024-26-0019
Government of India, in 2017, mandated a Side Impact Test (AIS 099 technically aligned to UN ECE Regulation No. 95.03 series of amendments) on M1 category Passenger Vehicles to ensure protection of occupants in lateral impact accident scenarios. Later, in 2022, a draft notification has been issued by the Government mandating installation of 6 airbags (2 Nos of thorax side airbags, 2 Nos of head protection or curtain airbags in addition to already mandated installation of Driver and Passenger Airbags) in all such passenger vehicles. However, the vehicles fitted with side thorax airbag and curtain airbags are proposed to be assessed as per AIS099 test only. Curtain Airbags are typically installed to protect occupant’s head from severe injuries in narrow object impacts simulated in Pole Side Impact Test Configurations. However, at present, India has not notified an equivalent standard to UN R135 demanding performance of the vehicle in pole side impact scenarios.
Technical Paper

The Impact of Uncertainty Quantification and Sensitivity Analysis in CAE Simulation based Regulatory Compliance

2024-01-16
2024-26-0294
Computer-aided engineering (CAE) is a routinely used technology for the design and testing of road vehicles, including the simulation of their response to an impact. To increase automotive industry competitiveness by reducing physical test-based type approval and to improve road safety, recent initiatives have been taken by both industry and public authorities to promote the use of virtual testing through numerical simulation as an alternative way to check regulatory compliance. [1] To ensure acceptance of this alternative method, the accuracy of the simulation models and procedures needs to be assured and rated independently of the modelling process, software tools, and computing platform. Similarly, it is also imperative to understand the uncertainties emerging out of different component design parameters and analyze their sensitivity towards producing deviations in the reported results as per the requirements of the regulatory standard.
X