Refine Your Search

Topic

Author

Search Results

Video

Ford: Driving Electric Car Efficiency

2012-03-29
The Focus Electric is Ford�s first full-featured 5 passenger battery electric vehicle. The engineering team set our sights on achieving best-in-class function and efficiency and was successful with an EPA certified 1XX MPGe and range XXX then the facing competition allowing for a slightly lower capacity battery pack and larger vehicle without customer trade-off. We briefly overview the engineering method and technologies employed to deliver the results as well as sharing some of the functional challenges unique to this type of vehicle. Presenter Charles Gray, Ford Motor Co.
Video

The Future (& Past) of Electrified Vehicles

2011-11-04
The presentation offers a brief history of the electric vehicle and parallels the realities of those early vehicles with the challenges and solutions of the electrified vehicles coming to market today. A technology evolution for every major component of these vehicles has now made this mode of transportation viable. The Focus Electric is Ford's first electric passenger car utilizing the advanced technology developments to meet the needs of electric car buyers in this emerging market. Presenter Charles Gray, Ford Motor Co.
Journal Article

Effects of B20 versus ULSD Fuel on Diesel Engine PM Emissions and Aftertreatment Performance

2010-04-12
2010-01-0790
A detailed study is undertaken to examine how 2010+ diesel engine exhaust emissions change when a soybean-derived B20 biodiesel fuel is used instead of a conventional ultra-low sulfur diesel fuel and to investigate how these changes impact the aftertreatment system. Particulate matter (PM) emissions for each fuel are characterized in terms of mass emissions, size distributions, organic versus soot fraction, metals content, and particle morphology. PM mass recorded by Dekati Mass Monitor, thermal analysis of quartz filters, and calculated from particle size distributions consistently shows a 2 - 3 fold decrease in engine-out soot emissions over a wide mid-load range when changing from ULSD to B20 fuel. This is partly due to a decrease in particle number and partly to a decrease in average size. HC and NO emissions, in contrast, exhibit little change with fuel type.
Journal Article

Model-Based Parameter Identification of Healthy and Aged Li-ion Batteries for Electric Vehicle Applications

2015-04-14
2015-01-0252
Electric vehicles are receiving considerable attention because they offer a more efficient and sustainable transportation alternative compared to conventional fossil-fuel powered vehicles. Since the battery pack represents the primary energy storage component in an electric vehicle powertrain, it requires accurate monitoring and control. In order to effectively estimate the battery pack critical parameters such as the battery state of charge (SOC), state of health (SOH), and remaining capacity, a high-fidelity battery model is needed as part of a robust SOC estimation strategy. As the battery degrades, model parameters significantly change, and this model needs to account for all operating conditions throughout the battery's lifespan. For effective battery management system design, it is critical that the physical model adapts to parameter changes due to aging.
Journal Article

A Pareto Frontier Analysis of Renewable-Energy Consumption, Range, and Cost for Hydrogen Fuel Cell vs. Battery Electric Vehicles

2012-04-16
2012-01-1224
As automakers strategize approaches to sustainable vehicle technologies, alternative powertrains must be considered to reduce future fleet vehicle emissions and improve energy security. These alternative vehicles include different fuels and electrification. The ultimate for on-road CO2 reductions is a zero emission vehicle, which can be achieved by either a hydrogen fuel cell or battery electric vehicle. These vehicles would also require a renewable energy source to provide their propulsion energy in order to achieve maximum sustainability for both CO2 reduction and energy security. Renewable energy sources such as wind or solar result in heat or electricity that needs to be generated into an energy carrier such as hydrogen or stored in a battery. When examining these options based strictly on the efficiency path, previous analysis have concluded fuel cell vehicles may not be an appropriate suitability strategy in comparison to battery electric vehicles.
Journal Article

Effects of Oxygenated Fuels on Combustion and Soot Formation/Oxidation Processes

2014-10-13
2014-01-2657
The Leaner Lifted-Flame Combustion (LLFC) strategy offers a possible alternative to low temperature combustion or other globally lean, premixed operation strategies to reduce soot directly in the flame, while maintaining mixing-controlled combustion. Adjustments to fuel properties, especially fuel oxygenation, have been reported to have potentially beneficial effects for LLFC applications. Six fuels were selected or blended based on cetane number, oxygen content, molecular structure, and the presence of an aromatic hydrocarbon. The experiments compared different fuel blends made of n-hexadecane, n-dodecane, methyl decanoate, tri-propylene glycol monomethyl ether (TPGME), as well as m-xylene. Several optical diagnostics have been used simultaneously to monitor the ignition, combustion and soot formation/oxidation processes from spray flames in a constant-volume combustion vessel.
Journal Article

An Experimental Study of Diesel-Fuel Property Effects on Mixing-Controlled Combustion in a Heavy-Duty Optical CI Engine

2014-04-01
2014-01-1260
Natural luminosity (NL) and chemiluminescence (CL) imaging diagnostics are employed to investigate fuel-property effects on mixing-controlled combustion, using select research fuels-a #2 ultra-low sulfur emissions-certification diesel fuel (CF) and four of the Fuels for Advanced Combustion Engines (FACE) diesel fuels (F1, F2, F6, and F8)-that varied in cetane number (CN), distillation characteristics, and aromatic content. The experiments were performed in a single-cylinder heavy-duty optical compression-ignition (CI) engine at two injection pressures, three dilution levels, and constant start-of-combustion timing. If the experimental results are analyzed only in the context of the FACE fuel design parameters, CN had the largest effect on emissions and efficiency.
Technical Paper

Control Challenges and Methodologies in Fuel Cell Vehicle Development

1998-10-19
98C054
In recent years, rapid and significant advances in fuel cell technology, together with advances in power electronics and control methodology, has enabled the development of high performance fuel cell powered electric vehicles. A key advance is that the low temperature (80°C) proton-exchange-membrane (PEM) fuel cell has become mature and robust enough to be used for automotive applications. Apart from the apparent advantage of lower vehicle emission, the overall fuel cell vehicle static and dynamic performance and power and energy efficiency are critically dependent on the intelligent design of the control systems and control methodologies. These include the control of: fuel cell heat and water management, fuel (hydrogen) and air (oxygen) supply and distribution, electric drive, main and auxiliary power management, and overall powertrain and vehicle systems.
Technical Paper

Economic, Environmental and Energy Life-Cycle Assessment of Coal Conversion to Automotive Fuels in China

1998-11-30
982207
A life-cycle assessment (LCA) has been developed to help compare the economic, environmental and energy (EEE) impacts of converting coal to automotive fuels in China. This model was used to evaluate the total economic cost to the customer, the effect on the local and global environments, and the energy efficiencies for each fuel option. It provides a total accounting for each step in the life cycle process including the mining and transportation of coal, the conversion of coal to fuel, fuel distribution, all materials and manufacturing processes used to produce a vehicle, and vehicle operation over the life of the vehicle. The seven fuel scenarios evaluated in this study include methanol from coal, byproduct methanol from coal, methanol from methane, methanol from coke oven gas, gasoline from coal, electricity from coal, and petroleum to gasoline and diesel. The LCA results for all fuels were compared to gasoline as a baseline case.
Technical Paper

Communication between Plug-in Vehicles and the Utility Grid

2010-04-12
2010-01-0837
This paper is the first in a series of documents designed to record the progress of the SAE J2293 Task Force as it continues to develop and refine the communication requirements between Plug-In Electric Vehicles (PEV) and the Electric Utility Grid. In February, 2008 the SAE Task Force was formed and it started by reviewing the existing SAE J2293 standard, which was originally developed by the Electric Vehicle (EV) Charging Controls Task Force in the 1990s. This legacy standard identified the communication requirements between the Electric Vehicle (EV) and the EV Supply Equipment (EVSE), including off-board charging systems necessary to transfer DC energy to the vehicle. It was apparent at the first Task Force meeting that the communications requirements between the PEV and utility grid being proposed by industry stakeholders were vastly different in the type of communications and messaging documented in the original standard.
Technical Paper

Development of a Desulfurization Strategy for a NOx Adsorber Catalyst System

2001-03-05
2001-01-0510
The aggressive reduction of future diesel engine NOx emission limits forces the heavy- and light-duty diesel engine manufacturers to develop means to comply with stringent legislation. As a result, different exhaust emission control technologies applicable to NOx have been the subject of many investigations. One of these systems is the NOx adsorber catalyst, which has shown high NOx conversion rates during previous investigations with acceptable fuel consumption penalties. In addition, the NOx adsorber catalyst does not require a secondary on-board reductant. However, the NOx adsorber catalyst also represents the most sulfur sensitive emissions control device currently under investigation for advanced NOx control. To remove the sulfur introduced into the system through the diesel fuel and stored on the catalyst sites during operation, specific regeneration strategies and boundary conditions were investigated and developed.
Technical Paper

Dimethoxy Methane in Diesel Fuel: Part 1. The Effect of Fuels and Engine Operating Modes on Emissions of Toxic Air Pollutants and Gas/Solid Phase PAH

2001-09-24
2001-01-3627
The objective of this study was to quantify engine-out emissions of potentially toxic compounds from a modern diesel engine operated with different fuels including 15% v/v dimethoxy methane in a low sulfur diesel fuel. Five diesel fuels were examined: a low-sulfur, low-aromatic hydrocracked (∼1 ppm) fuel, the same low sulfur fuel containing 15% v/v dimethoxy methane, a Fischer-Tropsch fuel, a CARB fuel, and an EPA number 2 certification fuel. A DaimlerChrysler OM611 CIDI engine was controlled with a SwRI Rapid Prototyping Electronic Control system. The engine was operated over 4 speed-load modes. Each operating mode and fuel combination was run in triplicate. Thirty three potentially toxic compounds were measured for each fuel and mode.
Technical Paper

Dimethoxy Methane in Diesel Fuel: Part 3. The Effect of Pilot Injection, Fuels and Engine Operating Modes on Emissions of Toxic Air Pollutants and Gas/Solid Phase PAH

2001-09-24
2001-01-3630
The objective of this study was to quantify the effect of pilot fuel injection on engine-out emissions of potentially toxic compounds from a modern diesel engine operated with different fuels including 15% v/v dimethoxy methane in a low-sulfur diesel fuel. Five diesel fuels were examined: a low-sulfur (∼1 ppm), low aromatic, hydrocracked fuel, the same low-sulfur fuel containing 15% v/v dimethoxy methane, a Fischer-Tropsch fuel, a California reformulated fuel, and a EPA number 2 certification fuel. A DaimlerChrysler OM611 CIDI engine was controlled with a SwRI Rapid Prototyping Electronic Control system. The pilot fuel injection was either turned off or turned on with engine control by either Location of Peak Pressure (LPP) of combustion or the original equipment manufacturer (OEM) calibration strategy. These three control strategies were compared over 2 speed-load modes run in triplicate. Thirty-three potentially toxic compounds were measured.
Technical Paper

Dimethoxy Methane in Diesel Fuel: Part 2. The Effect of Fuels on Emissions of Toxic Air Pollutants and Gas/Solid Phase PAH Using a Composite Of Engine Operating Modes

2001-09-24
2001-01-3628
A weighted composite of four engine-operating modes, representative of typical operating modes found in the US FTP driving schedule, were used to compare engine-out emissions of toxic compounds using five diesel fuels. The fuels examined were: a low-sulfur low-aromatic hydrocracked diesel fuel, the same low-sulfur fuel containing 15% v/v dimethoxy methane, a Fischer-Tropsch fuel, a CARB fuel, and a EPA number 2 diesel certification fuel. A DaimlerChrysler OM611 CIDI engine was operated over 4 speed-load modes: mode 5, 2600 RPM, 8.8 BMEP; mode 6, 2300 RPM, 4.2 BMEP; mode 10, 2000 RPM, 2.0 BMEP; mode 11, 1500 RPM, 2.6 BMEP. The four engine operating modes were weighted as follows: mode 5, 25/1200; mode 6, 200/1200; mode 10, 375/1200; and mode 11, 600/1200. Each operating mode and fuel combination was run in triplicate.
Technical Paper

Vapor Pressures of Diesel Fuel Oxygenate Blends

2002-10-21
2002-01-2850
A gas chromatographic technique was used to determine the vapor pressures of blends of six candidate diesel fuel oxygenates with three diesel fuels at 0, 5, 10, 30, and 100 percent blend levels. Both the oxygenates and the diesel fuels were selected to represent a variety of chemical compositions. The vapor pressures were determined over a range of temperatures from -30 C to +30 C. In each case the fraction of the vapor pressure derived from the oxygenate and the fuel was identified. The vapor pressure results showed that there were significant deviations from ideality, leading to both higher and lower vapor pressures than would be predicted from Raoult's Law. These results are significant for fire safety and evaporative emissions as well as for a more basic understanding of the behavior of these blends. Data were also obtained on the heats of vaporization for each of the blends.
Technical Paper

Oxygenate Compatibility with Diesel Fuels

2002-10-21
2002-01-2848
Miscibility, water tolerance, cloud point, and flash point data are presented for seven candidate diesel fuel oxygenates: dipentyl ether, dibutoxymethane, 2-ethoxyethyl ether, diethyl maleate, tripropylene glycol monomethyl ether, dibutyl maleate, and glycerol tributrate. These oxygenates were blended with three different diesel fuels: an oil sands diesel, an ultra-low sulfur diesel, and a Fischer-Tropsch diesel. Blend levels included 0, 5, 10, 30, and 100 % oxygenate. Properties were measured at temperatures of -30, -15, 0, 15, and 30 C.
Technical Paper

Impact of Engine Operating Conditions on Low-NOx Emissions in a Light-Duty CIDI Engine Using Advanced Fuels

2002-10-21
2002-01-2884
The control of NOx emissions is the greatest technical challenge in meeting future emission regulations for diesel engines. In this work, a modal analysis was performed for developing an engine control strategy to take advantage of fuel properties to minimize engine-out NOx emissions. This work focused on the use of EGR to reduce NOx while counteracting anticipated PM increases by using oxygenated fuels. A DaimlerChrysler OM611 CIDI engine for light-duty vehicles was controlled with a SwRI Rapid Prototyping Electronic Control System. Engine mapping consisted of sweeping parameters of greatest NOx impact, starting with OEM injection timing (including pilot injection) and EGR. The engine control strategy consisted of increased EGR and simultaneous modulation of both main and pilot injection timing to minimize NOx and PM emission indexes with constraints based on the impact of the modulation on BSFC, Smoke, Boost and BSHC.
Technical Paper

Communication Requirements for Plug-In Electric Vehicles

2011-04-12
2011-01-0866
This paper is the second in the series of documents designed to record the progress of a series of SAE documents - SAE J2836™, J2847, J2931, & J2953 - within the Plug-In Electric Vehicle (PEV) Communication Task Force. This follows the initial paper number 2010-01-0837, and continues with the test and modeling of the various PLC types for utility programs described in J2836/1™ & J2847/1. This also extends the communication to an off-board charger, described in J2836/2™ & J2847/2 and includes reverse energy flow described in J2836/3™ and J2847/3. The initial versions of J2836/1™ and J2847/1 were published early 2010. J2847/1 has now been re-opened to include updates from comments from the National Institute of Standards Technology (NIST) Smart Grid Interoperability Panel (SGIP), Smart Grid Architectural Committee (SGAC) and Cyber Security Working Group committee (SCWG).
Technical Paper

Diesel Particulate Control System for Ford 1.8L Sierra Turbo-Diesel to Meet 1997-2003 Particulate Standards

1994-03-01
940458
Feasibility of wall-flow diesel exhaust filter trap particulate aftertreatment emission control systems to meet the U.S. Federal, CARB, and EC passenger car standards for 1997/2003 and beyond for the 1360 kg (3000 lb.) EAO (Ford European Automotive Operations) 1.8 liter Sierra Turbo-Diesel passenger car is investigated. Plain and Pd catalyzed monolith wall flow diesel particulate traps are examined using Phillips No. 2 diesel fuel (Reference Standard), low sulfur (0.05% S) diesel fuel and an ultra-low sulfur (0.001% S) diesel fuel. Comparisons are made with baseline FTP75 and Highway exhaust emissions and Federal and CARB mandated particulate standards for 1997 and 2003. Effectiveness of catalyzed traps, plain traps, copper octoate trap regeneration fuel additive, and fuel sulfur content on the particulate emissions is determined.
Technical Paper

Influence of Fuel Sulfur Content on Particulate Emissions of Ford 1.8L Sierra Turbo-Diesel Equipped with Flow Through Catalytic Converter

1994-03-01
940902
Effectiveness of flow through catalytic diesel particulate aftertreatment devices in reducing particulate emissions is investigated on Ford's 1360 kg (3000 lb.) Sierra 1.8L Turbo-Diesel passenger car. Flow-through monolith type EAO reference catalyst and AC Rochester diesel catalyst are evaluated using Phillip's Control No. 2 diesel fuel, low sulfur (0.05% S) and ultra-low sulfur (0.001% S) diesel fuels. Comparisons are made with baseline exhaust emissions for FTP75 and Highway chassis dynamometer test procedures. Effects of catalyst aging of 320, 1610 and 6450 km (200, 1000 and 4000 miles) are examined. Results, based on 6450 km (4000 mile) limited durability, show that a ceramic monolith substrate of 400 cells per square inch (cpsi) with AC Rochester catalyst is capable of reducing particulate as well as HC and CO emissions to well below the 1994 Government mandated emission requirements with low (0.05% S) and ultra low (0.001% S) sulfur fuel.
X