Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Machine Learning Based Optimal Energy Storage Devices Selection Assistance for Vehicle Propulsion Systems

2020-04-14
2020-01-0748
This study investigates the use of machine learning methods for the selection of energy storage devices in military electrified vehicles. Powertrain electrification relies on proper selection of energy storage devices, in terms of chemistry, size, energy density, and power density, etc. Military vehicles largely vary in terms of weight, acceleration requirements, operating road environment, mission, etc. This study aims to assist the energy storage device selection for military vehicles using the data-drive approach. We use Machine Learning models to extract relationships between vehicle characteristics and requirements and the corresponding energy storage devices. After the training, the machine learning models can predict the ideal energy storage devices given the target vehicles design parameters as inputs. The predicted ideal energy storage devices can be treated as the initial design and modifications to that are made based on the validation results.
Technical Paper

Design Optimization of Sandwich Composite Armors for Blast Mitigation Using Bayesian Optimization with Single and Multi-Fidelity Data

2020-04-14
2020-01-0170
The most common and lethal weapons against military vehicles are the improvised explosive devices (IEDs). In an explosion, critical cabin’s penetrations and high accelerations can cause serious injuries and death of military personnel. This investigation uses single and multi-fidelity Bayesian optimization (BO) to design sandwich composite armors for blast mitigation. BO is an efficient methodology to solve optimization problems that involve black-box functions. The black-box function of this work is the finite element (FE) simulation of the armor subjected to blast. The main two components of BO are the surrogate model of the black-box function and the acquisition function that guides the optimization. In this investigation, the surrogate models are Gaussian Process (GP) regression models and the acquisition function is the multi-objective expected improvement (MEI) function. Information from low and high fidelity FE models is used to train the GP surrogates.
Technical Paper

A New Approach of Generating Travel Demands for Smart Transportation Systems Modeling

2020-04-14
2020-01-1047
The transportation sector is facing three revolutions: shared mobility, electrification, and autonomous driving. To inform decision making and guide smart transportation system development at the city-level, it is critical to model and evaluate how travelers will behave in these systems. Two key components in such models are (1) individual travel demands with high spatial and temporal resolutions, and (2) travelers’ sociodemographic information and trip purposes. These components impact one’s acceptance of autonomous vehicles, adoption of electric vehicles, and participation in shared mobility. Existing methods of travel demand generation either lack travelers’ demographics and trip purposes, or only generate trips at a zonal level. Higher resolution demand and sociodemographic data can enable analysis of trips’ shareability for car sharing and ride pooling and evaluation of electric vehicles’ charging needs.
Journal Article

Modeling and Simulation of a Hydraulic Steering System

2008-10-07
2008-01-2704
Conventional hydraulic steering systems keep improving performance and driving comfort by introducing advanced features via mechanical design. The ever increasing mechanical complexity requires the advanced modeling and simulation technology to mitigate the risks in the early stage of the development process. In this paper, we focus on advanced modeling tools environment with an example of a load sensing hydraulic steering system. The complete system architecture is presented. Analytical equations are developed for a priority valve and a steering control unit as the foundation of modeling. The full version of hydraulic steering system model is developed in Dymola platform. In order to capture interaction between steering and vehicle, the co-simulation platform between the hydraulic steering system and vehicle dynamics is established by integrating Dymola, Carsim and Simulink.
Technical Paper

Surface Pressure Fluctuations in Separated-Reattached Flows Behind Notched Spoilers

2007-05-15
2007-01-2399
Notched spoilers may be used to suppress flow-induced cavity resonance in vehicles with open sunroofs or side windows. The notches are believed to generate streamwise vortices that break down the structure of the leading edge cross-stream vortices predominantly responsible for the cavity excitation. The objectives of the present study were to gain a better understanding of the buffeting suppression mechanisms associated with notched spoilers, and to gather data for computational model verification. To this end, experiments were performed to characterize the surface pressure field downstream of straight and notched spoilers mounted on a rigid wall to observe the effects of the notches on the static and dynamic wall pressure. Detailed flow velocity measurements were made using hot-wire anemometry. The results indicated that the presence of notches on the spoiler reduces drag, and thus tends to move the flow reattachment location closer to the spoiler.
Technical Paper

Indirect Measurement of Tire Slip and Understeer/Oversteer

2006-12-05
2006-01-3605
This paper presents a method for indirect measurement of tire slip angles from chassis acceleration, yaw rate, and steer angle measurements. The chassis is assumed to be rigid so that acceleration data can be integrated to estimate velocities of the front and rear of the vehicle, from which slip angles can be predicted. The difference in front and rear slip angles is indicative of vehicle oversteer/understeer. Understeer data can then be correlated with position on the track to better understand vehicle handling behavior, aiding the tuning process. The technique is presented, and shown to work well with simulated data, even when the data is corrupted with up to 20% noise. Therefore, the inversion process presented here is theoretically sound. However, when the technique is applied to measured data from race cars, it is shown to be inaccurate. One suspected problem is the difficulty of getting accurate yaw rate data.
Technical Paper

Modeling and Simulation of an Electric Warship Integrated Engineering Plant

2006-11-07
2006-01-3050
A layered approach to the simulation of dynamically interdependent systems is presented. In particular, the approach is applied to the integrated engineering plant of a notional all-electric warship. The models and parameters of the notional ship are presented herein. This approach is used to study disruptions to the integrated engineering plant caused by anti-ship missiles. Example simulation results establish the effectiveness of this approach in examining the propagation of faults and cascading failures throughout a dynamically interdependent system of systems.
Technical Paper

Thermal Interface Materials Based on Anchored Carbon Nanotubes

2007-07-09
2007-01-3127
The new devices and missions to achieve the aims of NASA's Science Mission Directorate (SMD) are creating increasingly demanding thermal environments and applications. In particular, the low conductance of metal-to-metal interfaces used in the thermal switches lengthen the cool-down phase and resource usage for spacecraft instruments. During this work, we developed and tested a vacuum-compatible, durable, heat-conduction interface that employs carbon nanotube (CNT) arrays directly anchored on the mating metal surfaces via microwave plasma-enhanced, chemical vapor deposition (PECVD). We demonstrated that CNT-based thermal interface materials have the potential to exceed the performance of currently available options for thermal switches and other applications.
Technical Paper

Balloon Launched UAV with Nested Wing for Near Space Applications

2007-09-17
2007-01-3910
There has always been, from the very first UAV, a need for providing cost-effective methods of deploying unmanned aircraft systems at high altitudes. Missions for UAVs at high altitudes are used to conduct atmospheric research, perform global mapping missions, collect remote sensing data, and establish long range communications networks. The team of Gevers Aircraft, Technology Management Group, and Purdue University have designed an innovative balloon launched UAV for these near space applications. A UAV (Payload Return Vehicle) with a nested morphing wing was designed in order to meet the challenges of high altitude flight, and long range and endurance without the need for descent rate control with rockets or a feathering mode.
Technical Paper

Simulation of MADMEL Power Systems Components

1998-04-21
981258
Detailed computer models of system components for More Electric Aircraft have been developed using the Advanced Control System Language (ACSL) and its graphical front-end, Graphic Modeller. Among the devices modeled are a wound-rotor synchronous generator with parallel bridge-rectifier outputs, a switched-reluctance generator, and various loads including a DC-DC converter, an inverter-driven induction motor, and an electro-hydrostatic actuator. Results from the simulations are presented together with corroborating experimental test results.
Technical Paper

An Automated State Model Generation Algorithm for Simulation/Analysis of Power Systems with Power Electronic Components

1998-04-21
981256
In this paper, a recently-developed algorithmic method of deriving the state equations of power systems containing power electronic components is described. Therein the system is described by the pertinent branch parameters and the circuit topology; however, unlike circuit-based algorithms, the difference equations are not implemented at the branch level. Instead, the composite system state equations are established. A demonstration of the computer implementation of this algorithm to model a variable-speed, constant-frequency aircraft generation system is described. Because of the large number of states and complexity of the system, particular attention is placed on the development of a model structure which provides optimal simulation efficiency.
Technical Paper

The Immersed Boundary CFD Approach for Complex Aerodynamics Flow Predictions

2007-04-16
2007-01-0109
Standard CFD methods require a mesh that fits the boundaries of the computational domain. For a complex geometry the generation of such a grid is time-consuming and often requires modifications to the model geometry. This paper evaluates the Immersed Boundary (IB) approach which does not require a boundary-conforming mesh and thus would speed up the process of the grid generation. In the IB approach the CAD surfaces (in Stereo Lithography -STL- format) are used directly and this eliminates the surface meshing phase and also mitigates the process of the CAD cleanup. A volume mesh, consisting of regular, locally refined, hexahedrals is generated in the computational domain, including inside the body. The cells are then classified as fluid, solid and interface cells using a simple ray-tracing scheme. Interface cells, correspond to regions that are partially fluid and are intersected by the boundary surfaces.
Technical Paper

Development of an Experimental Database and Chemical Kinetic Models for Surrogate Gasoline Fuels

2007-04-16
2007-01-0175
The development of surrogate mixtures that represent gasoline combustion behavior is reviewed. Combustion chemistry behavioral targets that a surrogate should accurately reproduce, particularly for emulating homogeneous charge compression ignition (HCCI) operation, are carefully identified. Both short and long term research needs to support development of more robust surrogate fuel compositions are described. Candidate component species are identified and the status of present chemical kinetic models for these components and their interactions are discussed. Recommendations are made for the initial components to be included in gasoline surrogates for near term development. Components that can be added to refine predictions and to include additional behavioral targets are identified as well. Thermodynamic, thermochemical and transport properties that require further investigation are discussed.
Technical Paper

Computer Modeling and Simulation of a Tracked Log Skidder with Different Grapple Configurations

1998-09-14
981979
A track-type grapple log skidder was dynamically modeled to allow machine modification by computer to determine the effects of these modifications on the operation of the machine in the forest. The model consisted of an undercarriage, power train, log/drag force, and logging equipment (arch and grapple). This skidder had three types of logging attachments: winch, swinging boom (grapple), and single-function arch (grapple). Each was modeled and simulated under various conditions. The dynamic model of the skidder can be used to analyze its drawbar pull capability and lateral stability with various log weights and soil types on steep slopes. Validation of this model is needed later.
Technical Paper

Health Monitoring for Condition-Based Maintenance of a HMMWV using an Instrumented Diagnostic Cleat

2009-04-20
2009-01-0806
Operation & support costs for military weapon systems accounted for approximately 3/5th of the $500B Department of Defense budget in 2006. In an effort to ensure readiness and decrease these costs for ground vehicle fleets, health monitoring technologies are being developed for Condition-Based Maintenance of individual vehicles within a fleet. Dynamics-based health monitoring is used in this work because vibrations are a passive source of response data, which are global functions of the mechanical loading and properties of the vehicle. A common way of detecting faults in mechanical equipment, such as the suspension and chassis of a ground vehicle, is to compare measured operational vibrations to a reference (or healthy) signature to detect anomalies.
Technical Paper

A Look at Fatigue in Resistance Spot Welds-Notch or Crack?

2001-03-05
2001-01-0433
This paper presents and validates a model of fatigue crack propagation in resistance spot welded joints; this model is called the “Structural Stress Model” (SSM). Important features of the SSM are that it is based on the physical evidence of fatigue in spot welded joints and on well-accepted descriptors of fatigue more generally. Furthermore, it is usable by designers evaluating fatigue response of structures containing multiple welds. Underlying assumptions of the SSM are also reviewed.
Technical Paper

Swirl-Spray Interactions in a Diesel Engine

2001-03-05
2001-01-0996
Swirl in Diesel engines is known to be an important parameter that affects the mixing of the fuel jets, heat release, emissions, and overall engine performance. The changes may be brought about through interactions of the swirling flow field with the spray and through modifications of the flow field. The purpose of this paper is to investigate the interaction of the swirl with sprays in a Diesel engine through a computational study. A multi-dimensional model for flows, sprays, and combustion in engines is employed. Results from computations are reported with varying levels of swirl and initial turbulence in two typical Diesel engine geometries. It is shown that there is an optimal level of swirl for each geometry that results from a balance between increased jet surface area and, hence, mixing rates and utilization of air in the chamber.
Technical Paper

Modeling of Nonlinear Elastomeric Mounts. Part 1: Dynamic Testing and Parameter Identification

2001-03-05
2001-01-0042
A methodology for modeling elastomeric mounts as nonlinear lumped parameter models is discussed. A key feature of this methodology is that it integrates dynamic test results under different conditions into the model. The first step is to model the mount as a linear model that is simple but reproduces accurately results from dynamic tests under small excitations. Frequency Response Functions (FRF) enables systematic calculation of the parameters for the model. Under more realistic excitation, the mount exhibits non-linearity, which is investigated in the next step. For nonlinear structures, a simple and intuitive method is to use time-domain force-displacement (F-x) curves. Experiments to obtain the F-x curves involve controlling the displacement excitation and measuring the induced forces. From the F-x curves, stiffness and damping parameters are obtained with an optimization technique.
Technical Paper

Utilization of Solid Waste for Activated Carbon Production in Space

2003-07-07
2003-01-2372
Activated carbons have a unique capability of strongly absorbing a great variety of species, ranging from SO2 and NOx, to trace organics, mercury, and other heavy metals. Activated carbons can also be used for gas storage and gas separations, including systems of practical interest to NASA (e.g., CO2/N2/O2), and even for the purification of liquids. No single activated carbon is suitable for all applications, but appreciable control over sorbent properties can be exercised in the process of carbon preparation. Since activated carbons can be produced from a wide range of organic materials, including waste streams, the preparation of activated carbons on board spacecraft should involve a limited amount of additional resources, help manage on-board waste, and reduce the weight of materials to be launched from earth. The feasibility of producing waste-derived activated carbons suitable for SO2 and NO control was the subject of the current study.
Technical Paper

Analysis and Simulation of a UAV Power System

2002-10-29
2002-01-3175
Models for the components of a long-duration UAV power system are set forth. The models include the solar array, solar array power converter, fuel cell and electrolyzer system and corresponding power converter, and propulsion load. Based on these models, a power management control is derived, which when coupled with the component models, are used to simulate power system performance during start-up, through a day-night cycle, and through a solar eclipse.
X