Refine Your Search

Topic

Search Results

Journal Article

Reduction of Soot Formation in an Optical Single-Cylinder Gasoline Direct-Injected Engine Operated in Stratified Mode Using 350 Bar Fuel Injection Pressure, Dual-Coil and High-Frequency Ignition Systems

2017-03-14
2017-01-9278
The current trend toward more fuel efficient vehicles with lower emission levels has prompted development of new combustion techniques for use in gasoline engines. Stratified combustion has been shown to be a promising approach for increasing the fuel efficiency. However, this technique is hampered by drawbacks such as increased particulate and standard emissions. This study attempts to address the issues of increased emission levels by investigating the influence of high frequency ionizing ignition systems, 350 bar fuel injection pressure and various tumble levels on particulate emissions and combustion characteristics in an optical SGDI engine operated in stratified mode on isooctane. Tests were performed at one engine load of 2.63 bar BMEP and speed of 1200 rpm. Combustion was recorded with two high speed color cameras from bottom and side views using optical filters for OH and soot luminescence.
Technical Paper

Quantitative High Speed Stability Assessment of a Sports Utility Vehicle and Classification of Wind Gust Profiles

2020-04-14
2020-01-0677
The automotive trends of vehicles with lower aerodynamic drag and more powerful drivetrains have caused increasing concern regarding stability issues at high speeds, since more streamlined bodies show greater sensitivity to crosswinds. This is especially pronounced for high vehicles, such as sports utility vehicles. Besides, the competitiveness in the automotive industry requires faster development times and, thus, a need to evaluate the high speed stability performance in an early design phase, preferable using simulation tools. The usefulness of these simulation tools partly relies on realistic boundary conditions for the wind and quantitative measures for assessing stability without the subjective evaluation of experienced drivers. This study employs an on-road experimental measurements setup to define relevant wind conditions and to find an objective methodology to evaluate high speed stability.
Technical Paper

Water Injection System Application in a Mild Hybrid Powertrain

2020-04-14
2020-01-0798
The potential of 48V Mild Hybrid is promising in meeting the present and future CO2 legislations. There are various system layouts for 48V hybrid system including P0, P1, P2. In this paper, P2 architecture is used to investigate the effects of water injection benefits in a mild hybrid system. Electrification of the conventional powertrain uses the benefits of an electric drive in the low load-low speed region where the conventional SI engine is least efficient and as the load demand increases the IC Engine is used in its more efficient operating region. Engine downsizing and forced induction trend is popular in the hybrid system architecture. However, the engine efficiency is limited by combustion knocking at higher loads thus ignition retard is used to avoid knocking and fuel enrichment becomes must to operate the engine at MBT (Maximum Brake Torque) timing; in turn neutralizing the benefits of fuel savings by electrification.
Technical Paper

Effects of Multiple Injections on Engine-Out Emission Levels Including Particulate Mass from an HSDI Diesel Engine

2007-04-16
2007-01-0910
The effects of multiple injections on engine-out emissions from a high-speed direct injection (HSDI) diesel engine were investigated in a series of experiments using a single cylinder research engine. Injection sequences in which the main injection was split into two, three and four pulses were tested and the resulting emissions (NOx, CO HC and particulate matter), torque and cylinder pressures were compared to those obtained with single injections. Together with the number of injections, the effects of varying the dwell time were also investigated. It was found that dividing the main injection into two parts lowered the engine-out particulate and CO emissions and increased fuel efficiency. However, it also resulted in increased NOx emissions.
Technical Paper

Reducing Pressure Fluctuations at High Loads by Means of Charge Stratification in HCCI Combustion with Negative Valve Overlap

2009-06-15
2009-01-1785
Future demands for improvements in the fuel economy of gasoline passenger car engines will require the development and implementation of advanced combustion strategies, to replace, or combine with the conventional spark ignition strategy. One possible strategy is homogeneous charge compression ignition (HCCI) achieved using negative valve overlap (NVO). However, several issues need to be addressed before this combustion strategy can be fully implemented in a production vehicle, one being to increase the upper load limit. One constraint at high loads is the combustion becoming too rapid, leading to excessive pressure-rise rates and large pressure fluctuations (ringing), causing noise. In this work, efforts were made to reduce these pressure fluctuations by using a late injection during the later part of the compression. A more appropriate acronym than HCCI for such combustion is SCCI (Stratified Charge Compression Ignition).
Technical Paper

Gasoline HCCI Modeling: An Engine Cycle Simulation Code with a Multi-Zone Combustion Model

2002-05-06
2002-01-1745
For the application to Gasoline Homogenous Charge Compression Ignition (HCCI) modeling, a multi-zone model was developed. For this purpose, the detailed-chemistry code SENKIN from the CHEMKIN library was modified. In a previous paper, the authors explained how piston motion and a heat transfer model were implemented in the SENKIN code to make it applicable to engine modeling. The single-zone model developed was successfully implemented in the engine cycle simulation code AVL BOOST™. A multi-zone model, including a crevice volume, a quench layer and multiple core zones, is introduced here. A temperature distribution specified over these zones gives this model a wider range of application than the single-zone model, since fuel efficiency, emissions and heat release can now be predicted more accurately. The SENKIN-BOOST multi-zone model predictions are compared with experimental data.
Technical Paper

Impact of Conventional and Electrified Powertrains on Fuel Economy in Various Driving Cycles

2017-03-28
2017-01-0903
Many technological developments in automobile powertrains have been implemented in order to increase efficiency and comply with emission regulations. Although most of these technologies show promising results in official fuel economy tests, their benefits in real driving conditions and real driving emissions can vary significantly, since driving profiles of many drivers are different than the official driving cycles. Therefore, it is important to assess these technologies under different driving conditions and this paper aims to offer an overall perspective, with a numerical study in simulations. The simulations are carried out on a compact passenger car model with eight powertrain configurations including: a naturally aspirated spark ignition engine, a start-stop system, a downsized engine with a turbocharger, a Miller cycle engine, cylinder deactivation, turbocharged downsized Miller engine, a parallel hybrid electric vehicle powertrain and an electric vehicle powertrain.
Technical Paper

Interaction of Downforce Generating Devices and Cooling Air Flow - A Numerical and Experimental Study on Open Wheeled Race Cars

2012-04-16
2012-01-1165
This study reflects on two areas of vehicle aerodynamics, optimising cooling performance and features that will improve the handling of the car. Both areas will have a significant impact on the overall performance of the car and at the same time these areas are linked to each other. The considered vehicle in this study was the Chalmers Formula Student 2011 Formula SAE car and the flow field was analysed using both numerical simulations as well as performing wind tunnel experiments on a 1:3-scale model of the car. The focus on increasing downforce without increasing the aerodynamic drag is particularly good in Formula SAE since fuel economy is an event at the competition. Therefore, the intention of this work is to present a study on how undertrays with different design such as added foot plates, diffuser and strakes can improve the downforce and reduce the drag.
Technical Paper

Toward an Effective Virtual Powertrain Calibration System

2018-04-03
2018-01-0007
Due to stricter emission regulations and more environmental awareness, the powertrain systems are moving toward higher fuel efficiency and lower emissions. In response to these pressing needs, new technologies have been designed and implemented by manufacturers. As a result of increasing complexity of the powertrain systems, their control and optimization become more and more challenging. Virtual powertrain calibration, also known as model-based calibration, has been introduced to transfer a part of test bench testing into a virtual environment, and hence considerably reduce time and cost of product development process while increasing the product quality. Nevertheless, virtual calibration has not yet reached its full potential in industrial applications. Volvo Penta has recently developed a virtual test cell named VIRTEC, which is used in an ongoing pilot project to meet the Stage V emission standards.
Technical Paper

PHEV Energy Management: A Comparison of Two Levels of Trip Information

2012-04-16
2012-01-0745
Plug-in hybrid electric vehicles (PHEVs) have rechargeable energy storage which can be used to run the vehicle on shorter range on electricity from the grid. In the absence of a priori information about the trip, a straightforward strategy is to first deplete the battery down to a minimum level and then keep the state of charge (SoC) around this level. However, largely due to the battery losses, the overall fuel economy can be improved if the battery is discharged gradually. This requires some a priori knowledge about the trip. This paper investigates the tradeoff between improved fuel economy and the need for a priori information. This investigation is done using a variant of telemetry equivalent consumption minimization strategy (T-ECMS) which is modified to be used for a PHEV. To implement this strategy, several parameters need to be tuned based on an assumption of the future trip.
Technical Paper

Evaluation of Electrically Heated Catalyst Control Strategies against a Variation of Cold Engine Start Driver Behaviour

2022-03-29
2022-01-0544
An electrically heated catalyst (EHC) in the three-way catalyst (TWC) aftertreatment system of a gasoline internal combustion engine (ICE) provides cold engine start exhaust pollutant emission reduction potential. The EHC can be started before switching on the ICE, thereby offering the possibility to pre-heat (PRH) the TWC, in the absence of exhaust flow. The EHC can also provide post engine start heat (PSH) when the heat is accompanied by exhaust mass flow over the TWC. A mixed heating strategy (MXH) comprises both PRH and PSH. All three strategies are evaluated under a range of engine start variations using an ICE-exhaust aftertreatment (EATS) simulation framework. It is driven by an engine speed-torque requested trace, with an engine-out emissions model focused on cold-start, engine heating and catalyst heating engine measures and a physics- based EATS with EHC model.
Technical Paper

Target Driven Bushing Design for Wheel Suspension Concept Development

2023-04-11
2023-01-0638
Bushing elasticity is one of the most important compliance factors that significantly influence driving behavior. The deformations of the bushings change the wheel orientations under external forces. Another important factor of bushing compliance is to provide a comfortable driving experience by isolating the vibrations from road irregularities. However, the driving comfort and driving dynamics are often in conflict and need to be balanced in terms of bushing compliance design. Specifically, lateral force steer and brake force steer are closely related to safety and stability and comprises must be minimized. The sensitivity analysis helps engineers to understand the critical bushing for certain compliance attributes, but optimal balancing is complicated to understand. The combination of individual bushing stiffness must be carefully set to achieve an acceptable level of all the attributes.
Technical Paper

Analysis of Brake Judder by use of Amplitude Functions

1999-05-17
1999-01-1779
Brake judder is a forced vibration occurring in different types of vehicles. The frequency of the vibration can be as high as 500 Hz, but usually remains below 100 Hz and often as low as 10-20 Hz. The driver experiences judder as vibrations in the steering wheel, brake pedal and floor. For high frequency brake judder, the structural vibrations are accompanied by a sound. In the present paper the vibration amplitude (in terms of angular deflection, velocity or acceleration) of the caliper has been used as a quantitative measure of the vibration level. Brake Torque Variation (BTV) is the primary excitation for the vibrations. The mechanical effects generating BTV are linked not only to manufacturing tolerances but also to tribological issues. Uneven disc wear as well as Thermo-Elastic Instabilities (TEI) can lead to judder. Especially the effect of the wheel suspension on the transfer of the vibrations to the driver has to be considered.
Technical Paper

Supervisory Controller for a Light Duty Diesel Engine with an LNT-SCR After-Treatment System

2018-09-10
2018-01-1767
Look ahead information can be used to improve the powertrain’s fuel consumption while efficiently controlling exhaust emissions. A passenger car propelled by a Euro 6d capable diesel engine is studied. In the conventional approach, the diesel powertrain subsystem control is rule based. It uses no information of future load requests but is operated with the objective of low engine out exhaust emission species until the Exhaust After-Treatment System (EATS) light off has occurred, even if fuel economy is compromised greatly. Upon EATS light off, the engine is operated more fuel efficiently since the EATS system is able to treat emissions effectively. This paper presents a supervisory control structure with the intended purpose to operate the complete powertrain using a minimum of fuel while improving the robustness of exhaust emissions.
Technical Paper

Large-Eddy Simulation on the Effects of Fuel Injection Pressure on the Gasoline Spray Characteristics

2019-01-15
2019-01-0060
Increasing the injection pressure in gasoline direct injection engines has a substantial potential to reduce emissions while maintaining a high efficiency in spark ignition engines. Present gasoline injectors are operating in the range of 20 MPa to 25 MPa. Now there is an interest in higher fuel injection pressures, for instance, around 40 MPa, 60 MPa and even higher pressures, because of its potential for further emission reduction and fuel efficiency improvements. In order to fully utilize the high-pressure fuel injection technology, a fundamental understanding of gasoline spray characteristics is vital to gain insight into spray behavior under such high injection pressures. The understanding achieved may also be beneficial to improve further model development and facilitate the integration of such advanced injection systems into future gasoline engines.
Technical Paper

Investigation of Seat Suspensions with Embedded Negative Stiffness Elements for Isolating Bus Users’ Whole-Body Vibrations

2021-02-17
2021-01-5019
Bus drivers are a group at risk of often suffering from musculoskeletal problems, such as low-back pain, while bus passengers on the last-row seats experience accelerations of high values. In this paper, the contribution of K-seat in decreasing the above concern is investigated with a detailed simulation study. The K-seat model, a seat with a suspension that functions according to the KDamper concept, which combines a negative stiffness element with a passive one, is benchmarked against the conventional passive seat (PS) in terms of comfort when applied to different bus users’ seats. More specifically, it is tested in the driver’s and two different passengers’ seats, one from the rear overhang and one from the middle part. For the benchmark shake, both are optimized by applying excitations that correspond to real intercity bus floor responses when it drives over a real road profile.
Technical Paper

Holistic Approach for Improved Safety Including a Proposal of New Virtual Test Conditions of Small Electric Vehicles

2015-04-14
2015-01-0571
In the next 20 years the share of small electric vehicles (SEVs) will increase especially in urban areas. SEVs show distinctive design differences compared to traditional vehicles. Thus the consequences of impacts of SEVs with vulnerable road users (VRUs) and other vehicles will be different from traditional collisions. No assessment concerning vehicle safety is defined for vehicles within European L7e category currently. Focus of the elaborated methodology is to define appropriate test scenarios for this vehicle category to be used within a virtual tool chain. A virtual tool chain has to be defined for the realization of a guideline of virtual certification. The derivation and development of new test conditions for SEVs are described and are the main focus of this work. As key methodology a prospective methodical analysis under consideration of future aspects like pre-crash safety systems is applied.
Journal Article

Investigation of Homogeneous Lean SI Combustion in High Load Operating Conditions

2020-04-14
2020-01-0959
Homogeneous lean combustion (HLC) can be utilized to substantially improve spark ignited (SI) internal combustion engine efficiency. Higher efficiency is vital to enable clean, efficient and affordable propulsion for the next generation light duty vehicles. More research is needed to ensure robustness, fuel efficiency/NOx trade-off and utilization of HLC. Utilization can be improved by expanding the HLC operating window to higher engine torque domains which increases impact on real driving. The authors have earlier assessed boosted HLC operation in a downsized two-litre engine, but it was found that HLC operation could not be achieved above 15 bar NMEP due to instability and knocking combustion. The observation led to the conclusion that there exists a lean load limit. Therefore, further experiments have been conducted in a single cylinder research DISI engine to increase understanding of high load lean operation.
Technical Paper

Drivers’ Perceived Sensitivity to Crosswinds and to Low-Frequency Aerodynamic Lift Fluctuations

2023-04-11
2023-01-0659
The automotive industry continues to increase the utilization of computer-aided engineering. This put demands on finding reliable objective measures that correlate to subjective driver assessments on driving stability performance. However, the drivers’ subjective perception of driving stability can be difficult to quantify objectively, especially on test tracks where the wind conditions cannot be controlled. The advancement in driving simulator technology may enable evaluation of driving stability with high repeatability. The purpose of this study is to correlate the subjective assessment of driving stability to reliable objective measures and to evaluate the usefulness of a driving simulator for the subjective assessment. Two different driver clinic studies were performed in a state-of-the-art driving simulator. The first study included 38 drivers (professional, experienced and common drivers) and focused on crosswind gust sensitivity.
Technical Paper

Human Response to Vibrations and Its Contribution to the Overall Ride Comfort in Automotive Vehicles - A Literature Review

2020-04-14
2020-01-1085
The various factors that affect ride comfort, including noise, vibrations and harshness (NVH) have been in focus in many research studies due to an increasing demand in ride comfort in the automotive industry. Vibrations have been highlighted as an important contribution to assess and predict overall ride comfort. The purpose of this paper is to present an approach to explain ride comfort with respect to vibration for the seated occupant based on a systematic literature review of previous fundamental research and to relate these results to the application in the contemporary automotive industry. The results from the literature study show that numerous research studies have determined how vibration frequency, magnitude, direction, duration affect human response to vibration. Also, the studies have highlighted how body posture, age, gender and anthropometry affect the human perception of comfort.
X