Refine Your Search

Topic

Author

Search Results

Journal Article

High-Speed Flow and Combustion Visualization to Study the Effects of Charge Motion Control on Fuel Spray Development and Combustion Inside a Direct-Injection Spark-Ignition Engine

2011-04-12
2011-01-1213
An experimental study is performed to investigate the effects of charge motion control on in-cylinder fuel-air mixture preparation and combustion inside a direct-injection spark-ignition engine with optical access to the cylinder. High-pressure production injector is used with fuel pressures of 5 and 10 MPa. Three different geometries of charge motion control (CMC) device are considered; two are expected to enhance the swirl motion inside the engine cylinder whereas the third one is expected to enhance the tumble motion. Experiments are performed at 1500 rpm engine speed with the variation in fuel injection timing, fuel pressure and the number of injections. It is found that swirl-type CMC devices significantly enhance the fuel-air mixing inside the engine cylinder with slower spray tip penetration than that of the baseline case without CMC device. Combustion images show that the flame growth is faster with CMC device compared to the similar case without CMC device.
Journal Article

Transient Thermal Modeling of Power Train Components

2012-04-16
2012-01-0956
This paper discusses simplified lumped parameter thermal modeling of power train components. In particular, it discusses the tradeoff between model complexity and the ability to correlate the predicted temperatures and flow rates with measured data. The benefits and problems associated with using a three lumped mass model are explained and the value of this simpler model is promoted. The process for correlation and optimization using modern software tools is explained. Examples of models for engines and transmissions are illustrated along with their predictive abilities over typical driving cycles.
Technical Paper

Effects of Changing Ambient Humidity and Temperature on the Emissions of Carbureted Two- and Four-Stroke Hand-Held Engines

1997-09-08
972707
Effects of changing ambient humidity and temperature have been studied on the performance and emissions of a hand-held two-stroke and a hand-held four-stroke engine. The main effect of changes in ambient conditions is to change the intake air density and therefore the air-fuel ratio metered by the carburetor. Trends in the effects of humidity and temperature on emissions are predicted reasonably well by theoretical thermodynamic models. They suggest an improved correction for the dependence of NOx on ambient conditions, as a function of both humidity and operational air-fuel ratio, which appears to collapse NOx production data better than the existing KH correction factor. They also suggest a simple procedure for tuning engines to design air-fuel ratios using the measured exhaust-gas %CO, which takes into account the prevailing ambient conditions.
Technical Paper

Some Effects of Spark Plug Electrode Geometry and Orientation on Small-Engine Emissions

1998-09-14
982057
In the design of small off-highway and utility engines for compliance with increasingly stringent emissions standards, one component which can potentially reduce engine exhaust-gas emissions without necessitating changes in other, more costly parts is the spark plug. From studies carried out in automobile engines, benefits have been reported when using different spark-plug electrode shapes or when aligning the plugs in the cylinder head in preferred directions. However, these benefits, observed in automotive overhead valve engines with well-mixed charges, have generally been modest? and spark plugs of conventional shape remain the most widely used today. In the case of off-highway and utility engines, which operate at substantially higher air-fuel ratios, often with poorly-mixed charges, the potential for improving performance by changing spark-plug shape has not been explored.
Technical Paper

The Chrysler “Quick Shift Neon” Automanual Transmission Project

1998-11-16
983082
Formula One motorsport competition, ever seeking increases in powertrain responsiveness and efficiency, has utilized electronically-shifted manual transmissions for nearly a decade. With the advent of this technology for passenger car usage ( for example the Magneti Marelli “Selespeed” system), new levels of powertrain electronic control become possible. At the same time, world-wide emission and fuel economy standards have driven powertrain designers to seek transmissions that are multi-faceted; able to offer manual transmission levels of driveline efficiency while simultaneously offering the ability to be automatically controlled. This paper will document a 1995-1996 Chrysler advanced powertrain concept study that culminated in a fully driveable, fully automatic, manual 5 speed transmission Neon coupe.
Technical Paper

Life Cycle Management of Hydraulic Fluids and Lubricant Oils at Chrysler

1998-11-30
982221
A systematic life cycle management (LCM) approach has been used by Chrysler Corporation to compare existing and alternate hydraulic fluids and lubricating oils in thirteen classifications at a manufacturing facility. The presence of restricted or regulated chemicals, recyclability, and recycled content of the various products were also compared. For ten of the thirteen types of product, an alternate product was identified as more beneficial. This LCM study provided Chrysler personnel with a practical purchasing tool to identify the most cost effective hydraulic fluid or lubricant oil product available for a chosen application on an LCM basis.
Technical Paper

Quantification of primary flows of a torque converter using laser doppler velocimetry

2000-06-12
2000-05-0106
All modern automotive automatic transmissions require the use of a torque converter to allow for the transmission of torque from the engine to the drivetrain. Although they are commonly used throughout the automotive industry, there is little understanding of the internal flows within the torque converter. An experimental study has been conducted to reveal the internal flow characteristics within a production torque converter using Laser Doppler Velocimetry (LDV) under the operating conditions. LDV measurements were conducted on the planes between impeller blades, and the gap between the impeller and turbine blades. The study showed that the internal flow is highly complex and the difference in rotor speeds between the impeller and turbine compound the flow effects. Transmission oil flows in the planes at the impeller exit and gap region were affected by the turbine blade as it passed.
Technical Paper

A Review of Pre-Chamber Initiated Jet Ignition Combustion Systems

2010-10-25
2010-01-2263
This paper reviews progress on turbulent jet ignition systems for otherwise standard spark ignition engines, with focus on small prechamber systems (≺3% of clearance volume) with auxiliary pre-chamber fueling. The review covers a range of systems including early designs such as those by Gussak and Oppenheim and more recent designs proposed by General Motors Corporation, FEV, Bosch and MAHLE Powertrain. A major advantage of jet ignition systems is that they enable very fast burn rates due to the ignition system producing multiple, distributed ignition sites, which consume the main charge rapidly and with minimal combustion variability. The locally distributed ignition sites allow for increased levels of dilution (lean burn/EGR) when compared to conventional spark ignition combustion. Dilution levels are comparable to those reported in recent homogeneous charge compression ignition (HCCI) systems.
Technical Paper

An Electronically Tunable Resonator for Noise Control

2001-04-30
2001-01-1615
Many engineering systems create unwanted noise that can be reduced by the careful application of engineering noise controls. When this noise travels down tubes and pipes, a tuned resonator can be used to muffle noise escaping from the tube. The classical examples are automobile exhaust and ventilation system noise. In these cases where a narrow frequency band of noise exists, a traditional engineering control consists of adding a tuned Helmholtz resonator to reduce unwanted tonal noise by reflecting it back to the source (Temkin, 1981). As long as the frequency of the unwanted noise falls within the tuned resonator frequency range, the device is effective. However, if the frequency of the unwanted sound changes to a frequency that does not match the tuned resonator frequency, the device is no longer effective. Conventional resonators have fixed tuning and cannot effectively muffle tonal noise with time-varying frequency.
Technical Paper

Design and Selection Factors for Automatic Transaxle Tapered Roller Bearings

1992-02-01
920609
Tapered roller bearings have proven successful in a number of high-volume automatic transaxle designs. Typically, tapered roller bearings are required to carry high loads generated by helical and hypoid gears. To meet the demands of a successful design, a number of factors must be considered in the selection and application of tapered roller bearings. This paper presents a discussion of these factors as well as results from Chrysler's transaxle testing. Selection of tapered roller bearings is based on the transmission duty cycle developed using load and speed histograms, gear data, size constraints, and life requirements. A bearing life analysis considering the total transaxle system is conducted using a sophisticated computer program. Various system effects are analyzed including the load/speed cycle, housing and shaft rigidity, lubrication, bearing setting, thermal effects, and bearing internal design.
Technical Paper

High Performance Forged Steel Crankshafts - Cost Reduction Opportunities

1992-02-01
920784
Higher horsepower per liter engines have put more demand on the crankshaft, often requiring the use of forged steel. This paper examines cost reduction opportunities to offset the penalties associated with forged steel, with raw material and machinability being the primary factors evaluated. A cost model for crankshaft processing is utilized in this paper as a design tool to select the lowest cost material grade. This model is supported by fatigue and machinability data for various steel grades. Materials considered are medium carbon, low alloy, and microalloy steels; the effects of sulfur as a machining enhancer is also studied.
Technical Paper

Permeation of Gasoline-Alcohol Fuel Blends Through High-Density Polyethylene Fuel Tanks with Different Barrier Technologies

1992-02-01
920164
The automobile industry has been using high-density polyethylene (HDPE) as a material to fabricate fuel tanks. Because untreated HDPE is permeable to the primary constituents of gasoline, these fuel tanks are now being produced with various barrier technologies that significantly reduce this permeation rate. Four currently available barrier technologies are fluorination, sulfonation, coextrusion, and the laminar barrier technology. These technologies have successfully proven to decrease the permeation rate of pure gasoline. However, it is suspected that their effectiveness may be reduced when alcohols are introduced into the fuel blend. In this work, we determine the permeation rates of gasoline-alcohol fuel blends through HDPE by conducting tests on 22-gallon HDPE fuel tanks and on small HDPE bottles fabricated with and without these barrier technologies. The goal of this study is to provide a comprehensive evaluation of these four barrier technologies.
Technical Paper

Running Loss Test Procedure Development

1992-02-01
920322
A running loss test procedure has been developed which integrates a point-source collection method to measure fuel evaporative running loss from vehicles during their operation on the chassis dynamometer. The point-source method is part of a complete running loss test procedure which employs the combination of site-specific collection devices on the vehicle, and a sampling pump with sampling lines. Fugitive fuel vapor is drawn into these collectors which have been matched to characteristics of the vehicle and the test cell. The composite vapor sample is routed to a collection bag through an adaptation of the ordinary constant volume dilution system typically used for vehicle exhaust gas sampling. Analysis of the contents of such bags provides an accurate measure of the mass and species of running loss collected during each of three LA-4* driving cycles. Other running loss sampling methods were considered by the Auto-Oil Air Quality Improvement Research Program (AQIRP or Program).
Technical Paper

Fiber Optic Imaging System for Remote Location Flow Visualization Studies

1992-02-01
920305
The purpose of this work was to develop a fiber optic imaging system for use in flow visualization studies at the Michigan State University Engine Research Laboratory. A flexible fiber optic image carrier was coupled with a high speed rotating prism camera to create a unique imaging system which can easily reach remote location test sites. The flow visualization study was conducted on a motored 3.5 L four-valve engine test rig. A 40 watt pulsed copper vapor laser was synchronized with the camera to produce motion picture film at 5000 frames per second (fps). The image carrier which is attached to the camera contained an 80 degree field of view (FOV) tip adapter for viewing the entire cross-sectional area of the cylinder. The area imaged was a radial plane located 3 cm from the intake valves. The engine rig was motored at 850 rpm with a flow rate of 18 kg/hr. Entrained microballoon seeding particles were filmed as they traveled through the cylinder.
Technical Paper

A Demonstration of Simultaneous Infrared and Visible Imaging Techniques with Pressure Data in an Optically Accessible Diesel Engine Operating at Part Load with High EGR

2011-04-12
2011-01-1395
This work presents a method for simultaneously capturing visible and infrared images along with pressure data in an optical Diesel engine based on the International 4.5L VT275 engine. This paper seeks to illustrate the merits of each imaging technique for visualizing both in-cylinder fuel spray and combustion. The engine was operated under a part load, high simulated exhaust gas recirculation operating condition. Experiments examining fuel spray were conducted in nitrogen. Overlays of simultaneously acquired infrared and visible images are presented to illustrate the differences in imaging between the two techniques. It is seen that the infrared images spatially describe the fuel spray, especially fuel vapors, and the fuel mixing process better than the high-speed visible images.
Technical Paper

Analyzing Vibrations in an IC Engine Valve Train

1998-02-23
980570
This study analyzes the vibration characteristics of the valve train of a 2.0L SOHC Chrysler Corp. Neon engine over a range of operating speeds to investigate and demonstrate the advantages and limitations of various dynamic measurements such as displacement, velocity, and acceleration in this application. The valve train was tested in a motoring fixture at speeds of 500 to 3500 camshaft rpm. The advantages of analyzing both time and frequency domain measurements are described. Both frequency and order analysis were done on the data. The theoretical order spectra of cam displacement and acceleration were computed and compared to the experimental data. Deconvolution was used to uncover characteristic frequencies of vibration in the system. The theoretical cam acceleration spectrum was deconvolved from measured acceleration spectra to reveal the frequency response function of the follower system.
Technical Paper

Methanol Concentration Smart Sensor

1993-03-01
930354
A Methanol Concentration Smart Sensor has been developed to support the demand for alternately fueled vehicles operating on blends of methanol and gasoline in any mixture up to 85% methanol. The sensor measures concentration by exploiting the difference in dielectric properties between methanol and gasoline. The measurement is made based on the distributed capacitance of a coil of wire, contained in a reservoir through which the fuel passes. This signal, along with temperature compensation inputs, is then fed to an integral microprocessor, which provides a voltage output proportional to the methanol concentration of the fuel. The Powertrain Controller uses this information to modify injector pulse width and provide proper spark advance. This paper will explain the sensor's development methodology and function.
Technical Paper

Natural Gas Converter Performance and Durability

1993-03-01
930222
Natural gas-fueled vehicles impose unique requirements on exhaust aftertreatment systems. Methane conversion, which is very difficult for conventional automotive catalysts, may be required, depending on future regulatory directions. Three-way converter operating windows for simultaneous conversion of HC, CO, and NOx are considerably more narrow with gas engine exhaust. While several studies have demonstrated acceptable fresh converter performance, aged performance remains a concern. This paper presents the results of a durability study of eight catalytic converters specifically developed for natural gas engines. The converters were aged for 300 hours on a natural gas-fueled 7.0L Chevrolet engine operated at net stoichiometry. Catalyst performance was evaluated using both air/fuel traverse engine tests and FTP vehicle tests. Durability cycle severity and a comparison of results for engine and vehicle tests are discussed.
Technical Paper

Experience in Sand Casting Aluminum MMC Prototype Components

1993-03-01
930179
Typical sand-casting techniques have been shown to be inappropriate in pouring particulate reinforced aluminum metal matrix composite (Al-MMC) castings. New gating/risering configurations were necessary to produce castings of acceptable soundness. Several automotive components, including brake rotors, cylinder liners and camshaft thrust plates, were prepared using special techniques. Initial durability test results of several Al-MMC prototype components are presented.
Technical Paper

An Experimental Study of In-Cylinder Air Flow in a 3.5L Four-Valve SI Engine by High Speed Flow Visualization and Two-Component LDV Measurement

1993-03-01
930478
In-cylinder flows in four-valve SI engines were examined by high frame rate flow visualization and two-component LDV measurement. It is believed that the tumble and swirl motion generated during intake breaks down into small-scale turbulence later in the cycle. The exact nature of this relationship is not well known. However, control of the turbulence offers control of the combustion process. To develop a better physical understanding of the in-cylinder flow, the effects of the cylinder head intake port configuration and the piston geometry were examined. For the present study, a 3.5L, four-valve engine was modified to be mounted on an AVL single cylinder research engine type 520. A quartz cylinder was fabricated for optical access to the in-cylinder flow. Piston rings were replaced by Rulon-LD rings. A Rulon-LD ring is advantageous for the optical access as it requires no lubrication.
X