Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Improvement of an LS-DYNA Fuel Delivery Module (FDM) Crash Simulation

2008-04-14
2008-01-0253
This paper proposes and evaluates improvements to a crash simulation of a fuel delivery module in a fuel tank. The simulations were performed in ANSYS/LS-DYNA. Deviations between the original simulation and test data were studied and reasons for the deviations hypothesized. These reasons stemmed from some of the simplifying assumptions of the model. Improvements consisted of incorporating plasticity and strain rate effects into the material models. Performance criteria were also directly incorporated into the material models such that non-performing portions of the model could be deactivated during the simulation. Finally, solid-fluid interactions were added into the simulation to include the momentum transfer from fuel to the fuel delivery module. It was previously thought that effects of a crash would be most severe on the module when the fuel tank was empty and the module was full with fuel.
Technical Paper

An Optical and Numerical Characterization of Directly Injected Compressed Natural Gas Jet Development at Engine-Relevant Conditions

2019-04-02
2019-01-0294
Compressed natural gas (CNG) is an attractive, alternative fuel for spark-ignited (SI), internal combustion (IC) engines due to its high octane rating, and low energy-specific CO2 emissions compared with gasoline. Directly-injected (DI) CNG in SI engines has the potential to dramatically decrease vehicles’ carbon emissions; however, optimization of DI CNG fueling systems requires a thorough understanding of the behavior of CNG jets in an engine environment. This paper therefore presents an experimental and modeling study of DI gaseous jets, using methane as a surrogate for CNG. Experiments are conducted in a non-reacting, constant volume chamber (CVC) using prototype injector hardware at conditions relevant to modern DI engines. The schlieren imaging technique is employed to investigate how the extent of methane jets is impacted by changing thermodynamic conditions in the fuel rail and chamber.
Technical Paper

Algorithm Design for Filtering Input Shaft Speed from Judder and Minimize Static Error by Phase Advance Method

2015-03-10
2015-01-0029
Accuracy of clutch torque model which converts target torque to target stroke is essential to control the dry clutch system. Continuous Adaptation algorithm requires micro slip control during in-gear driving. Clutch judder during micro slip control can cause detrimental effect on the output of controller as slip speed is calculated by deviation of engine speed and clutch speed. Conventional approach to avoid clutch judder is using low pass filter to the input of controller which is slip speed. But this affect to the overall response time of slip controller. In this paper, signal processing algorithm is design and tested for the clutch speed(Input shaft speed). With low pass filter in clutch speed, clutch judder signal is decreased but overall time delay creates static error during acceleration. Several phase advance algorithm is designed to overcome the static error during acceleration without disadvantage of decreasing clutch judder signal.
Technical Paper

Hybrid Powertrain Technology Assessment through an Integrated Simulation Approach

2019-09-09
2019-24-0198
Global automotive fuel economy and emissions pressures mean that 48 V hybridisation will become a significant presence in the passenger car market. The complexity of powertrain solutions is increasing in order to further improve fuel economy for hybrid vehicles and maintain robust emissions performance. However, this results in complex interactions between technologies which are difficult to identify through traditional development approaches, resulting in sub-optimal solutions for either vehicle attributes or cost. The results presented in this paper are from a simulation programme focussed on the optimisation of various advanced powertrain technologies on 48 V hybrid vehicle platforms. The technologies assessed include an electrically heated catalyst, an insulated turbocharger, an electric water pump and a thermal management module.
Journal Article

Balancing Hydraulic Flow and Fuel Injection Parameters for Low-Emission and High-Efficiency Automotive Diesel Engines

2019-09-09
2019-24-0111
The introduction of new light-duty vehicle emission limits to comply under real driving conditions (RDE) is pushing the diesel engine manufacturers to identify and improve the technologies and strategies for further emission reduction. The latest technology advancements on the after-treatment systems have permitted to achieve very low emission conformity factors over the RDE, and therefore, the biggest challenge of the diesel engine development is maintaining its competitiveness in the trade-off “CO2-system cost” in comparison to other propulsion systems. In this regard, diesel engines can continue to play an important role, in the short-medium term, to enable cost-effective compliance of CO2-fleet emission targets, either in conventional or hybrid propulsion systems configuration. This is especially true for large-size cars, SUVs and light commercial vehicles.
Technical Paper

Strive for Zero Emissions Impact from Hybrids

2019-09-09
2019-24-0146
Since several decades, passenger cars and light duty vehicles (LDV) with spark-ignited engines reach full pollutant conversion during warm up conditions; the major challenge has been represented by the cold start and warming up strategies. The focus on technology developments of exhaust after treatment systems have been done in the thermal management in order to reach the warm up conditions as soon as possible. A new challenge is now represented by the Real Driving Emission (RDE) Regulation as this bring more various, and not any longer cycle defined, cold start conditions. On the other hand, once the full conversion has been reached, it would be beneficial for many Exhaust After Treatment System (EATS) components, e.g. for overall durability if the exhaust gas temperature could be lowered. To take significant further emission steps, approaching e.g. zero emission concepts, we investigate the use of Electrical Heating Catalyst (EHC) also including pre-heating.
X