Refine Your Search

Topic

Author

Search Results

Journal Article

Influence of Injection Timing and Piston Bowl Geometry on PCCI Combustion and Emissions

2009-04-20
2009-01-1102
Premixed Charge Compression Ignition (PCCI), a Low Temperature Combustion (LTC) strategy for diesel engines is of increasing interest due to its potential to simultaneously reduce soot and NOx emissions. However, the influence of mixture preparation on combustion phasing and heat release rate in LTC is not fully understood. In the present study, the influence of injection timing on mixture preparation, combustion and emissions in PCCI mode is investigated by experimental and computational methods. A sequential coupling approach of 3D CFD with a Stochastic Reactor Model (SRM) is used to simulate the PCCI engine. The SRM accounts for detailed chemical kinetics, convective heat transfer and turbulent micro-mixing. In this integrated approach, the temperature-equivalence ratio statistics obtained using KIVA 3V are mapped onto the stochastic particle ensemble used in the SRM.
Journal Article

Eulerian CFD Modeling of Coupled Nozzle Flow and Spray with Validation Against X-Ray Radiography Data

2014-04-01
2014-01-1425
This paper implements a coupled approach to integrate the internal nozzle flow and the ensuing fuel spray using a Volume-of-Fluid (VOF) method in the CONVERGE CFD software. A VOF method was used to model the internal nozzle two-phase flow with a cavitation description closed by the homogeneous relaxation model of Bilicki and Kestin [1]. An Eulerian single velocity field approach by Vallet et al. [2] was implemented for near-nozzle spray modeling. This Eulerian approach considers the liquid and gas phases as a complex mixture with a highly variable density to describe near nozzle dense sprays. The mean density is obtained from the Favreaveraged liquid mass fraction. The liquid mass fraction is transported with a model for the turbulent liquid diffusion flux into the gas.
Journal Article

Numerical Simulations of Supersonic Diesel Spray Injection and the Induced Shock Waves

2014-04-01
2014-01-1423
Shock waves have been recently observed in high-pressure diesel sprays. In this paper, three-dimensional numerical simulations of supersonic diesel spray injection have been performed to investigate the underlying dynamics of the induced shock waves and their interactions with the spray. A Volume-of-Fluid based method in the CFD software (CONVERGE) is used to model this multiphase phenomena. An adaptive Mesh Refinement (AMR) scheme is employed to capture the front of the spray and the shock waves with high fidelity. Simulation results are compared to the available experimental observations to validate the numerical procedure. Parametric studies with different injection and ambient conditions are conducted to examine the effect of these factors on the generation of shock waves and their dynamics.
Journal Article

CFD-Guided Heavy Duty Mixing-Controlled Combustion System Optimization with a Gasoline-Like Fuel

2017-03-28
2017-01-0550
A computational fluid dynamics (CFD) guided combustion system optimization was conducted for a heavy-duty compression-ignition engine with a gasoline-like fuel that has an anti-knock index (AKI) of 58. The primary goal was to design an optimized combustion system utilizing the high volatility and low sooting tendency of the fuel for improved fuel efficiency with minimal hardware modifications to the engine. The CFD model predictions were first validated against experimental results generated using the stock engine hardware. A comprehensive design of experiments (DoE) study was performed at different operating conditions on a world-leading supercomputer, MIRA at Argonne National Laboratory, to accelerate the development of an optimized fuel-efficiency focused design while maintaining the engine-out NOx and soot emissions levels of the baseline production engine.
Journal Article

A Machine Learning-Genetic Algorithm (ML-GA) Approach for Rapid Optimization Using High-Performance Computing

2018-04-03
2018-01-0190
A Machine Learning-Genetic Algorithm (ML-GA) approach was developed to virtually discover optimum designs using training data generated from multi-dimensional simulations. Machine learning (ML) presents a pathway to transform complex physical processes that occur in a combustion engine into compact informational processes. In the present work, a total of over 2000 sector-mesh computational fluid dynamics (CFD) simulations of a heavy-duty engine were performed. These were run concurrently on a supercomputer to reduce overall turnaround time. The engine being optimized was run on a low-octane (RON70) gasoline fuel under partially premixed compression ignition (PPCI) mode. A total of nine input parameters were varied, and the CFD simulation cases were generated by randomly sampling points from this nine-dimensional input space. These input parameters included fuel injection strategy, injector design, and various in-cylinder flow and thermodynamic conditions at intake valve closure (IVC).
Journal Article

Understanding Hydrocarbon Emissions in Heavy Duty Diesel Engines Combining Experimental and Computational Methods

2017-03-28
2017-01-0703
Fundamental understanding of the sources of fuel-derived Unburned Hydrocarbon (UHC) emissions in heavy duty diesel engines is a key piece of knowledge that impacts engine combustion system development. Current emissions regulations for hydrocarbons can be difficult to meet in-cylinder and thus after treatment technologies such as oxidation catalysts are typically used, which can be costly. In this work, Computational Fluid Dynamics (CFD) simulations are combined with engine experiments in an effort to build an understanding of hydrocarbon sources. In the experiments, the combustion system design was varied through injector style, injector rate shape, combustion chamber geometry, and calibration, to study the impact on UHC emissions from mixing-controlled diesel combustion.
Technical Paper

Investigation of Reynolds Stress Model for Complex Flow Using CONVERGE

2020-04-14
2020-01-1104
The Reynolds stress turbulence model (RSM) has been developed to go beyond the Boussinesq hypothesis and to improve turbulence modeling of flows with significant mean streamline curvature and secondary flow. In this paper the RSM in commercial CFD software CONVERGE is tested for its performance and robustness when applying to complex flows. Several validation cases including flow over flat plate, vortex combustor, diesel engine spray and combustion were selected to test the RSM. The swirling flow in vortex combustor, non-reacting but vaporizing ECN Spray A (free jet) and Sandia small bore diesel engine case are used to demonstrate the benefits of the RSM over the widely used RNG k-epsilon model without model tuning. The vortex combustor case shows the RSM can provide good prediction for strong swirling flow. ECN spray A case was used to demonstrate that the RSM can accurately predict the liquid and vapor penetration lengths of a free jet under diesel engine conditions.
Journal Article

A Comprehensive Evaluation of Diesel Engine CFD Modeling Predictions Using a Semi-Empirical Soot Model over a Broad Range of Combustion Systems

2018-04-03
2018-01-0242
Single-cylinder engine experiments and computational fluid dynamics (CFD) modeling were used in this study to conduct a comprehensive evaluation of the accuracy of the modeling approach, with a focus on soot emissions. A semi-empirical soot model, the classic two-step Hiroyasu model with Nagle and Strickland-Constable oxidation, was used. A broad range of direct-injected (DI) combustion systems were investigated to assess the predictive accuracy of the soot model as a design tool for modern DI diesel engines. Experiments were conducted on a 2.5 liter single-cylinder engine. Combustion system combinations included three unique piston bowl shapes and seven variants of a common rail fuel injector. The pistons included a baseline “Mexican hat” piston, a reentrant piston, and a non-axisymmetric piston similar to the Volvo WAVE design. The injectors featured six or seven holes and systematically varied included angles from 120 to 150 degrees and hole sizes from 170 to 273 μm.
Journal Article

Numerical Investigation of a Gasoline-Like Fuel in a Heavy-Duty Compression Ignition Engine Using Global Sensitivity Analysis

2017-03-28
2017-01-0578
Fuels in the gasoline auto-ignition range (Research Octane Number (RON) > 60) have been demonstrated to be effective alternatives to diesel fuel in compression ignition engines. Such fuels allow more time for mixing with oxygen before combustion starts, owing to longer ignition delay. Moreover, by controlling fuel injection timing, it can be ensured that the in-cylinder mixture is “premixed enough” before combustion occurs to prevent soot formation while remaining “sufficiently inhomogeneous” in order to avoid excessive heat release rates. Gasoline compression ignition (GCI) has the potential to offer diesel-like efficiency at a lower cost and can be achieved with fuels such as low-octane straight run gasoline which require significantly less processing in the refinery compared to today’s fuels.
Journal Article

Effect of Off-Axis Needle Motion on Internal Nozzle and Near Exit Flow in a Multi-Hole Diesel Injector

2014-04-01
2014-01-1426
The internal structure of Diesel fuel injectors is known to have a significant impact on the nozzle flow and the resulting spray emerging from each hole. In this paper the three-dimensional transient flow structures inside a Diesel injector is studied under nominal (in-axis) and realistic (including off-axis lateral motion) operating conditions of the needle. Numerical simulations are performed in the commercial CFD code CONVERGE, using a two-phase flow representation based on a mixture model with Volume of Fluid (VOF) method. Moving boundaries are easily handled in the code, which uses a cut-cell Cartesian method for grid generation at run time. First, a grid sensitivity study has been performed and mesh requirements are discussed. Then the results of moving needle calculations are discussed. Realistic radial perturbations (wobbles) of the needle motion have been applied to analyze their impact on the nozzle flow characteristics.
Technical Paper

Development of an Experimental Database and Kinetic Models for Surrogate Diesel Fuels

2007-04-16
2007-01-0201
Computational fluid dynamic (CFD) simulations that include realistic combustion/emissions chemistry hold the promise of significantly shortening the development time for advanced high-efficiency, low-emission engines. However, significant challenges must be overcome to realize this potential. This paper discusses these challenges in the context of diesel combustion and outlines a technical program based on the use of surrogate fuels that sufficiently emulate the chemical complexity inherent in conventional diesel fuel.
Technical Paper

On Determining the Quality Levels of Engineering Analyses Process - A 6 Sigma Approach

2008-04-14
2008-01-1167
Determining quality levels of analyses process is important in terms of being able to estimate the quality levels. This paper presents an approach based on 6 sigma methodology to estimate the quality levels of engineering analyses. The analyses types covered here are structural and computational fluid dynamics (CFD) types. Three examples covering the analyses types are presented here that show the way quality levels are reported. With the aim of continuous improvement of the analysis process, there is a need to build quality metrics specific to different product types. Future work is aimed to address this need for specific quality metrics.
Technical Paper

A Feasible CFD Methodology for Gasoline Intake Flow Optimization in a HEV Application - Part 1: Development and Validation

2010-10-25
2010-01-2239
Hybrid vehicle engines modified for high exhaust gas recirculation (EGR) are a good choice for high efficiency and low NOx emissions. Such operation can result in an HEV when a downsized engine is used at high load for a large fraction of its run time to recharge the battery or provide acceleration assist. However, high EGR will dilute the engine charge and may cause serious performance problems such as incomplete combustion, torque fluctuation, and engine misfire. An efficient way to overcome these drawbacks is to intensify tumble leading to increased turbulent intensity at the time of ignition. The enhancement of turbulent intensity will increase flame velocity and improve combustion quality, therefore increasing engine tolerance to higher EGR. It is accepted that the detailed experimental characterization of flow field near top dead center (TDC) in an engine environment is no longer practical and cost effective.
Technical Paper

A Feasible CFD Methodology for Gasoline Intake Flow Optimization in a HEV Application - Part 2: Prediction and Optimization

2010-10-25
2010-01-2238
Today's engine and combustion process development is closely related to the intake port layout. Combustion, performance and emissions are coupled to the intensity of turbulence, the quality of mixture formation and the distribution of residual gas, all of which depend on the in-cylinder charge motion, which is mainly determined by the intake port and cylinder head design. Additionally, an increasing level of volumetric efficiency is demanded for a high power output. Most optimization efforts on typical homogeneous charge spark ignition (HCSI) engines have been at low loads because that is all that is required for a vehicle to make it through the FTP cycle. However, due to pumping losses, this is where such engines are least efficient, so it would be good to find strategies to allow the engine to operate at higher loads.
Technical Paper

Computational Fluid Dynamic (CFD) Analysis to Optimize the Pump Suction Line Configuration of a Hydraulic Control System

2002-03-19
2002-01-1426
This paper summarizes the successful application of Computational Fluid Dynamics (CFD) analysis to optimize the pump suction line configuration of a hydraulic control system. The suction lines receive fluid from hydraulic tank and supply the fluid to different hydraulic components like fan pump, implement pump, charge pump, etc. Field report shows some of the pumps are failing before their expected operation hours. It is suspected that the shortage of fluid from the specified requirement is the probable cause of the early pump failures. This motivates to investigate the fluid flow phenomena in the suction lines. The CFD analysis is applied to study the flow distribution of the current suction line configuration. This paper provides the details of the CFD analysis steps to optimize the pump suction line configuration.
Technical Paper

Computational Fluid Dynamics (CFD) Analysis to Predict and Control the Cavitation Erosion in a Hydraulic Control Valve

2002-03-04
2002-01-0572
This paper summarizes the successful application of Computational Fluid Dynamics (CFD) analysis to predict and control the cavitation erosion in a hydraulic control valve. The accurate control of different vehicle operations demands very fine spool modulations in a hydraulic valve. The precise spool modulations create very high flow rates and high-pressure drops in the valve. The low local fluid pressure regions create cavitation inside the valve. Due to the explosion of bubbles there is a high erosion damage to the valve body as well as the spool surface. The CFD analysis has been used to predict the location of cavitation origination and also used to control the cavitation by redistributing the flow inside the valve.
Technical Paper

An Innovative Approach Combining Adaptive Mesh Refinement, the ECFM3Z Turbulent Combustion Model, and the TKI Tabulated Auto-Ignition Model for Diesel Engine CFD Simulations

2016-04-05
2016-01-0604
The 3-Zones Extended Coherent Flame Model (ECFM3Z) and the Tabulated Kinetics for Ignition (TKI) auto-ignition model are widely used for RANS simulations of reactive flows in Diesel engines. ECFM3Z accounts for the turbulent mixing between one zone that contains compressed air and EGR and another zone that contains evaporated fuel. These zones mix to form a reactive zone where combustion occurs. In this mixing zone TKI is applied to predict the auto-ignition event, including the ignition delay time and the heat release rate. Because it is tabulated, TKI can model complex fuels over a wide range of engine thermodynamic conditions. However, the ECFM3Z/TKI combustion modeling approach requires an efficient predictive spray injection calculation. In a Diesel direct injection engine, the turbulent mixing and spray atomization are mainly driven by the liquid/gas coupling phenomenon that occurs at moving liquid/gas interfaces.
Technical Paper

Investigating Limitations of a Two-Zone NOx Model Applied to DI Diesel Combustion Using 3-D Modeling

2016-04-05
2016-01-0576
A two-zone NOx model intended for 1-D engine simulations was developed and used to model NOx emissions from a 2.5 L single-cylinder engine. The intent of the present work is to understand key aspects of a simple NOx model that are needed for predictive accuracy, including NOx formation and destruction phenomena in a DI Diesel combustion system. The presented two-zone model is fundamentally based on the heat release rate and thermodynamic incylinder data, and uses the Extended Zeldovich mechanism to model NO. Results show that the model responded very well to changes in speed, load, injection timing, and EGR level. It matched measured tail pipe NOx levels within 20%, using a single tuning setup. When the model was applied to varied injection rate shapes, it showed correct sensitivity to speed, load, injection timing, and EGR level, but the absolute level was well outside the target accuracy. The same limitation was seen when applying the Plee NOx model.
Technical Paper

Application of High Performance Computing for Simulating Cycle-to-Cycle Variation in Dual-Fuel Combustion Engines

2016-04-05
2016-01-0798
Interest in operational cost reduction is driving engine manufacturers to consider low-cost fuel substitution in heavy-duty diesel engines. These dual-fuel (DF) engines could be operated either in diesel-only mode or operated with premixed natural gas (NG) ignited by a pilot flame of compression-ignited direct-injected diesel fuel. Under certain conditions, dual-fuel operation can result in increased cycle-to-cycle variability (CCV) during combustion. CFD can greatly help in understanding and identifying critical parameters influencing CCV. Innovative modelling techniques and large computing resources are needed to investigate the factors affecting CCV in dual-fuel engines. This paper discusses the use of the High Performance Computing resource Titan, at Oak Ridge National Laboratory, to investigate CCV of a dual-fuel engine.
Technical Paper

Cycle to Cycle Variation Study in a Dual Fuel Operated Engine

2017-03-28
2017-01-0772
The standard capability of engine experimental studies is that ensemble averaged quantities like in-cylinder pressure from multiple cycles and emissions are reported and the cycle to cycle variation (CCV) of indicated mean effective pressure (IMEP) is captured from many consecutive combustion cycles for each test condition. However, obtaining 3D spatial distribution of all the relevant quantities such as fuel-air mixing, temperature, turbulence levels and emissions from such experiments is a challenging task. Computational Fluid Dynamics (CFD) simulations of engine flow and combustion can be used effectively to visualize such 3D spatial distributions. A dual fuel engine is considered in the current study, with manifold injected natural gas (NG) and direct injected diesel pilot for ignition.
X