Refine Your Search

Topic

Author

Search Results

Journal Article

Meeting the US Heavy-Duty EPA 2010 Standards and Providing Increased Value for the Customer

2010-10-05
2010-01-1934
The paper will discuss the design and development of heavy-duty diesel engines to meet the US EPA 2010 on-highway standards - 0.2 g/HP-hr NOx and 0.01 g/HP-hr particulate matter (PM). In meeting these standards a combination of in-cylinder control and aftertreatment control for both NOx and particulate has been used. For NOx control, a combination of cooled exhaust gas recirculation (EGR) and selective catalytic reduction (SCR) is used. The SCR catalyst uses copper zeolite to achieve high levels of NOx conversion efficiency with minimal ammonia slip and unparalleled thermal durability. For particulate control, a diesel particulate filter (DPF) with upstream oxidation catalyst (DOC) is used. While the DPF may be actively regenerated when required, it operates predominantly with passive regeneration - enabled by the high NOx levels between the engine and the DPF, associated with high efficiency SCR systems and NO₂ production across the DOC.
Journal Article

Why Cu- and Fe-Zeolite SCR Catalysts Behave Differently At Low Temperatures

2010-04-12
2010-01-1182
Cu- and Fe-zeolite SCR catalysts emerged in recent years as the primary candidates for meeting the increasingly stringent lean exhaust emission regulations, due to their outstanding activity and durability characteristics. It is commonly known that Cu-zeolite catalysts possess superior activity to Fe-zeolites, in particular at low temperatures and sub-optimal NO₂/NOx ratios. In this work, we elucidate some underlying mechanistic differences between these two classes of catalysts, first based on their NO oxidation abilities, and then based on the relative properties of the two types of exchanged metal sites. Finally, by using the ammonia coverage-dependent NOx performance, we illustrate that state-of-the-art Fe-zeolites can perform better under certain transient conditions than in steady-state.
Journal Article

Diesel Engine Technologies Enabling Powertrain Optimization to Meet U.S. Greenhouse Gas Emissions

2013-09-08
2013-24-0094
The world-wide commercial vehicle industry is faced with numerous challenges to reduce oil consumption and greenhouse gases, meet stringent emissions regulations, provide customer value, and improve safety. This work focuses on the new U.S. regulation of greenhouse gas (GHG) emissions from commercial vehicles and diesel engines and the most likely technologies to meet future anticipated standards while improving transportation freight efficiency. In the U.S., EPA and NHTSA have issued a joint proposed GHG rule that sets limits for CO2 and other GHGs from pick-up trucks and vans, vocational vehicles, semi-tractors, and heavy duty diesel engines. This paper discusses and compares different technologies to meet GHG regulations for diesel engines based on considerations of cost, complexity, real-world fidelity, and environmental benefit.
Journal Article

Modeling Approach to Estimate EGR Cooler Thermal Fatigue Life

2015-04-14
2015-01-1654
Cooled EGR continues to be a key technology to meet emission regulations, with EGR coolers performing a critical role in the EGR system. Designing EGR coolers that reliably manage thermal loads is a challenge with thermal fatigue being a top concern. The ability to estimate EGR cooler thermal fatigue life early in the product design and validation cycle allows for robust designs that meet engine component reliability requirements and customer expectations. This paper describes a process to create an EGR cooler thermal fatigue life model. Components which make up the EGR cooler have differing thermal responses, consequently conjugate transient CFD must be used to accurately model metal temperatures during heating and cooling cycles. Those metal temperatures are then imported into FEA software for structural analysis. Results from both the CFD and FEA are then used in a simplified numerical model to estimate the virtual strain of the EGR cooler.
Journal Article

Perception of Diesel Engine Gear Rattle Noise

2015-06-15
2015-01-2333
Component sound quality is an important factor in the design of competitive diesel engines. One component noise that causes complaints is the gear rattle that originates in the front-of-engine gear train which drives the fuel pump and other accessories. The rattle is caused by repeated tooth impacts resulting from fluctuations in differential torsional acceleration of the driving gears. These impacts generate a broadband, impulsive noise that is often perceived as annoying. In most previous work, the overall sound quality of diesel engines has been considered without specifically focusing on predicting the perception of gear rattle. Gear rattle level has been quantified based on angular acceleration measurements, but those measurements can be difficult to perform. Here, the emphasis was on developing a metric based on subjective testing of the perception of gear rattle.
Journal Article

An Engine and Powertrain Mapping Approach for Simulation of Vehicle CO2 Emissions

2015-09-29
2015-01-2777
Simulations used to estimate carbon dioxide (CO2) emissions and fuel consumption of medium- and heavy-duty vehicles over prescribed drive cycles often employ engine fuel maps consisting of engine measurements at numerous steady-state operating conditions. However, simulating the engine in this way has limitations as engine controls become more complex, particularly when attempting to use steady-state measurements to represent transient operation. This paper explores an alternative approach to vehicle simulation that uses a “cycle average” engine map rather than a steady state engine fuel map. The map contains engine CO2 values measured on an engine dynamometer on cycles derived from vehicle drive cycles for a range of generic vehicles. A similar cycle average mapping approach is developed for a powertrain (engine and transmission) in order to show the specific CO2 improvements due to powertrain optimization that would not be recognized in other approaches.
Journal Article

Analytic Solution for the Flow Distribution and Pressure Drop of Ceramic Partially-Plugged Wall Flow Diesel Particulate Filters

2015-04-14
2015-01-1056
A 1-dimensional analytic solution has been developed to evaluate the pressure drop and filtration performance of ceramic wall-flow partial diesel particulate filters (PFs). An axially resolved mathematical model for the static pressure and velocity profiles prevailing inside wall-flow filters, with such unique plugging configurations, is being proposed for the first time. So far, the PF models that have been developed are either iterative/numerical in nature [1], or based on commercial CFD packages [7]. In comparison, an analytic solution approach is a transparent and computationally inexpensive tool that is capable of accurately predicting trends as well as, offering explanations to fundamental performance behavior. The simple mathematical expressions that have been obtained facilitate rational decision-making when designing partial filters, and could also reduce the complexity of OBD logic necessary to control onboard filter performance.
Journal Article

Aftertreatment Architecture and Control Methodologies for Future Light Duty Diesel Emission Regulations

2017-03-28
2017-01-0911
Future light duty vehicles in the United States are required to be certified on the FTP-75 cycle to meet Tier 3 or LEV III emission standards [1, 2]. The cold phase of this cycle is heavily weighted and mitigation of emissions during this phase is crucial to meet the low tail pipe emission targets [3, 4]. In this work, a novel aftertreatment architecture and controls to improve Nitrogen Oxides (NOx) and Hydrocarbon (HC) or Non Methane Organic gases (NMOG) conversion efficiencies at low temperatures is proposed. This includes a passive NOx & HC adsorber, termed the diesel Cold Start Concept (dCSC™) catalyst, followed by a Selective Catalytic Reduction catalyst on Filter (SCRF®) and an under-floor Selective Catalytic Reduction catalyst (SCR). The system utilizes a gaseous ammonia delivery system capable of dosing at two locations to maximize NOx conversion and minimize parasitic ammonia oxidation and ammonia slip.
Journal Article

Diesel Particulate Filter System - Effect of Critical Variables on the Regeneration Strategy Development and Optimization

2008-04-14
2008-01-0329
Regeneration of diesel particulate filters poses major challenges in developing the particulate matter emission control technology to meet EPA 2007/2010 emissions regulations. The problem areas are multifold due to the complexity involved in designing the filter system, developing regeneration strategies and controlling the regeneration process. This paper discusses the need for active regeneration systems. It also addresses several key limitations and trade-offs between the regeneration strategy, chemical kinetics, exhaust gas temperature and the regeneration efficiency. Passive regeneration of diesel particulate filter systems is known to be highly dependent on the engine-out [NOx/PM] ratio as well as exhaust temperature over the duty cycle. Using catalytic oxidation of auxiliary fuel injected into the system, the exhaust gas temperature can be successfully enhanced for filter regeneration.
Journal Article

Powertrain Cycle for Emission Certification

2012-09-24
2012-01-2059
In August of 2011, the US Environmental Protection Agency issued new Green House Gas (GHG) emissions regulations for heavy duty vehicles. These regulations included new procedures for the evaluation of hybrid powertrains and vehicles. One of the hybrid options allows for the evaluation of an engine plus a hybrid transmission (a powertrain). For this type of testing, EPA has proposed simulating a vehicle following the hybrid vehicle test procedures, including the use of the vehicle cycles and the A to B comparison testing - as required for the full vehicle evaluation option. This paper proposes an alternative approach by defining a powertrain cycle. The powertrain cycle is based on the heavy duty engine emissions cycle - the transient FTP cycle. Simulation and test results are presented showing similar performance over the engine and vehicle cycles. This approach offers several advantages as compared to the procedure described in EPA's GHG rule.
Journal Article

Thermodynamic Systems for Tier 2 Bin 2 Diesel Engines

2013-04-08
2013-01-0282
Light duty vehicle emission standards are getting more stringent than ever before as stipulated by US EPA Tier 2 Standards and LEV III regulations proposed by CARB. The research in this paper sponsored by US DoE is focused towards developing a Tier 2 Bin 2 Emissions compliant light duty pickup truck with class leading fuel economy targets of 22.4 mpg “City” / 34.3 mpg “Highway”. Many advanced technologies comprising both engine and after-treatment systems are essential towards accomplishing this goal. The objective of this paper would be to discuss key engine technology enablers that will help in achieving the target emission levels and fuel economy. Several enabling technologies comprising air-handling, fuel system and base engine design requirements will be discussed in this paper highlighting both experimental and analytical evaluations.
Journal Article

New Insights into Reaction Mechanism of Selective Catalytic Ammonia Oxidation Technology for Diesel Aftertreatment Applications

2011-04-12
2011-01-1314
Mitigation of ammonia slip from SCR system is critical to meeting the evolving NH₃ emission standards, while achieving maximum NOx conversion efficiency. Ammonia slip catalysts (ASC) are expected to balance high activity, required to oxidize ammonia across a broad range of operating conditions, with high selectivity of converting NH₃ to N₂, thus avoiding such undesirable byproducts as NOx or N₂O. In this work, new insights into the behavior of an advanced ammonia slip catalyst have been developed by using accelerated progressive catalyst aging as a tool for catalyst property interrogation. The overall behavior was deconstructed to several underlying functions, and referenced to an active but non-selective NH₃ oxidation function of a diesel oxidation catalyst (DOC) and to the highly selective but minimally active NH₃ oxidation function of an SCR catalyst.
Journal Article

Internal Diesel Injector Deposits: Theory and Investigations into Organic and Inorganic Based Deposits

2013-10-14
2013-01-2670
Over the last two decades, global emission regulations have become more stringent and have required the use of more advanced fuel injection systems. This includes the use of tighter tolerances, more rapid injections and internal components actuated by weaker injection forces. Unfortunately, these design features make the entire system more susceptible to fuel contaminants. Over the last six years, the composition of these contaminants has evolved from hard insoluble debris, such as dust and rocks, to soluble chemical contaminants. Recent research by the diesel engine manufacturers, fuel injection equipment suppliers and the fuel and fuel additive industry has discovered a major source of the soluble chemical contaminant that leads to injector deposits to be derived from cost effective and commonly used additives used to protect against pipeline corrosion.
Technical Paper

Meeting the US 2007 Heavy-Duty Diesel Emission Standards - Designing for the Customer

2007-10-30
2007-01-4170
The paper covers the design and development of Heavy-Duty (HD) Diesel engines that meet the 2007 HD US EPA emission standards. These standards are the most stringent standards in the world for on-highway HD diesel engines, and have driven the application of new technologies, which includes: particulate aftertreatment, crankcase ventilation systems, and second generation cooled EGR. The paper emphasizes the importance of designing the product to meet the tough expectations of the trucking industry - for lowest total cost of ownership, lowest operating costs, high uptime, ease of maintenance, high performance and durability. A key objective was that these new low emission engines should meet or exceed the performance, reliability and fuel economy standards set by the products they replace. Additionally, these engines were designed to be fully compatible and emissions compliant with bio-diesel B20 blends that meet the ASTM and EMA fuel standards.
Technical Paper

Rapid In Situ Measurement of Fuel Dilution of Oil in a Diesel Engine using Laser-Induced Fluorescence Spectroscopy

2007-10-29
2007-01-4108
A technique for rapid in situ measurement of the fuel dilution of oil in a diesel engine is presented. Fuel dilution can occur when advanced in-cylinder fuel injection techniques are employed for the purpose of producing rich exhaust for lean NOx trap catalyst regeneration. Laser-induced fluorescence (LIF) spectroscopy is used to monitor the oil in a Mercedes 1.7-liter engine operated on a dynamometer platform. A fluorescent dye suitable for use in diesel fuel and oil systems is added to the engine fuel. The LIF spectra are monitored to detect the growth of the dye signal relative to the background oil fluorescence; fuel mass concentration is quantified based on a known sample set. The technique was implemented with fiber optic probes which can be inserted at various points in the engine oil system. A low cost 532-nm laser diode was used for excitation.
Technical Paper

Cummins Vehicle Mission Simulation Tool: Software Architecture and Applications

2010-10-05
2010-01-1997
This paper presents the business purpose, software architecture, technology integration, and applications of the Cummins Vehicle Mission Simulation (VMS) software. VMS is the value-based analysis tool used by the marketing, sales, and product engineering functions to simulate vehicle missions quickly and to gauge, communicate, and improve the value proposition of Cummins engines to customers. VMS leverages the best of software architecture practices and proven technologies available today. It consists of a close integration of MATLAB and Simulink with Java, XML, and JDBC technologies. This Windows compatible application software uses stand-alone mathematical models compiled using Real Time Workshop. A built-in MySQL database contains product data for engines, driveline components, vehicles, and topographic routes. This paper outlines the database governance model that facilitates effective management, control, and distribution of engine and vehicle data across the enterprise.
Technical Paper

Interaction Between Fuel Additive and Oil Contaminant: (II) Its Impact on Fuel Stability and Filter Plugging Mechanism

2003-10-27
2003-01-3140
Sulfur containing species as well as other polar molecules provide lubricity and thermal stability to diesel fuels. During the refining process to produce low and ultra-low sulfur diesel fuels, these components are removed. As a result, fuel additives such as lubricity agents and antioxidant may be added to protect fuel stability and prevent fuel pump wear. Some lubricity additives, such as dimer acids, resulted in fuel filter plugging. The plugging mechanism was related to the capability of aliphatic acids to form agglomeration by interactions with the overbased detergents, delivered into the fuel as oil contaminants. Other sources of acids, derived from thermal degradation, can lead to the same problem. In this study, individual lubricant additives were mixed in the fuel to form single- and dual-component systems. Levels of compatibility and amounts of interaction products were evaluated for individual solutions.
Technical Paper

Sulfur Management of NOx Adsorber Technology for Diesel Light-duty Vehicle and Truck Applications

2003-10-27
2003-01-3245
Sulfur poisoning from engine fuel and lube is one of the most recognizable degradation mechanisms of a NOx adsorber catalyst system for diesel emission reduction. Even with the availability of 15 ppm sulfur diesel fuel, NOx adsorber will be deactivated without an effective sulfur management. Two general pathways are currently being explored for sulfur management: (1) the use of a disposable SOx trap that can be replaced or rejuvenated offline periodically, and (2) the use of diesel fuel injection in the exhaust and high temperature de-sulfation approach to remove the sulfur poisons to recover the NOx trapping efficiency. The major concern of the de-sulfation process is the many prolonged high temperature rich cycles that catalyst will encounter during its useful life. It is shown that NOx adsorber catalyst suffers some loss of its trapping capacity upon high temperature lean-rich exposure.
Technical Paper

An Emission and Performance Comparison of the Natural Gas Cummins Westport Inc. C-Gas Plus Versus Diesel in Heavy-Duty Trucks

2002-10-21
2002-01-2737
Cummins Westport Inc. (CWI) released for production the latest version of its C8.3G natural gas engine, the C Gas Plus, in July 2001. This engine has increased ratings for horsepower and torque, a full-authority engine controller, wide tolerance to natural gas fuel (the minimum methane number is 65), and improved diagnostics capability. The C Gas Plus also meets the California Air Resources Board optional low-NOx (2.0 g/bhp-h) emission standard for automotive and urban buses. Two pre-production C Gas Plus engines were operated in a Viking Freight fleet for 12 months as part of the U.S. Department of Energy's Fuels Utilization Program. In-use exhaust emissions, fuel economy, and fuel cost were collected and compared with similar 1997 Cummins C8.3 diesel tractors. CWI and the West Virginia University developed an ad-hoc test cycle to simulate the Viking Freight fleet duty cycle from in-service data collected with data loggers.
X