Refine Your Search

Topic

Author

Search Results

Journal Article

Power Train Model Refinement Linked with Parameter Updating Through Nonlinear Optimization

2010-06-09
2010-01-1421
In the virtual development process validated simulation models are requested to accurately predict power train vibration and comfort phenomena. Conclusions from refined parameter studies enable to avoid costly tests on rigs and on the road. Thereby, an appropriate modeling approach for specific phenomena has to be chosen to ensure high quality results. But then, parameters for characterizing the dynamic properties of components are often insufficient and have to be roughly estimated in this development stage. This results in a imprecise prediction of power train resonances and in a less conclusive understanding of the considered phenomena. Conclusions for improvements remain uncertain. This paper deals with the two different aspects of model refinement and parameter updating. First an existing power train model (predecessor power train) is analyzed whether the underlying modeling approach can reproduce the physical behavior of the power train dynamics adequately.
Journal Article

CO2 Reduction Potential through Improved Mechanical Efficiency of the Internal Combustion Engine: Technology Survey and Cost-Benefit Analysis

2013-04-08
2013-01-1740
The need for significant reduction of fuel consumption and CO₂ emissions has become the major driver for development of new vehicle powertrains today. For the medium term, the majority of new vehicles will retain an internal combustion engine (ICE) in some form. The ICE may be the sole prime mover, part of a hybrid powertrain or even a range extender; in every case potential still exists for improvement in mechanical efficiency of the engine itself, through reduction of friction and of parasitic losses for auxiliary components. A comprehensive approach to mechanical efficiency starts with an analysis of the main contributions to engine friction, based on a measurement database of a wide range of production engines. Thus the areas with the highest potential for improvement are identified. For each area, different measures for friction reduction may be applicable with differing benefits.
Journal Article

Synthesis of Efficient Powersplit CVT/IVT System

2014-04-01
2014-01-1726
The target of the work is to find out the algorithm of definition of the ratios of mechanical part of complex powersplit CVT/IVT system with regard to the highest achievable efficiency. The presented synthesis is focused on powersplit systems, which will consist of a CVT part, differential and eventually by-pass gear. The algorithm will be programmed and become an integral part of the program Sungear developed on Czech Technical University in Prague for analyses and synthesis of planetary stepped transmissions and CVT/IVT powersplit systems. The article will mainly present the algorithm of definition of efficient powersplit system. For the search of the efficient powersplit system we assume that the following parameters are given: a Spread and efficiency of used CVT system. b Total spread of the whole powersplit CVT/IVT mechanism. c Optional: Ratios of the used CVT system. d Optional: Ratios of the whole powersplit CVT/IVT system.
Journal Article

Dual Fuel Engine Simulation - A Thermodynamic Consistent HiL Compatible Model

2014-04-01
2014-01-1094
This works presents a real-time capable simulation model for dual fuel operated engines. The computational performance is reached by an optimized filling and emptying modeling approach applying tailored models for in-cylinder combustion and species transport in the gas path. The highly complex phenomena taking place during Diesel and gasoline type combustion are covered by explicit approaches supported by testbed data. The impact of the thermodynamic characteristics induced by the different fuels is described by an appropriate set of transport equations in combination with specifically prepared property databases. A thermodynamic highly accurate 6-species approach is presented. Additionally, a 3-species and a 1-species transport approach relying on the assumption of a lumped fuel are investigated regarding accuracy and computational performance. The comparison of measured and simulated pressure and temperature traces shows very good agreement.
Technical Paper

A Strategy for Developing an Inclusive Load Case for Verification of Squeak and Rattle Noises in the Car Cabin

2021-08-31
2021-01-1088
Squeak and rattle (S&R) are nonstationary annoying and unwanted noises in the car cabin that result in considerable warranty costs for car manufacturers. Introduction of cars with remarkably lower background noises and the recent emphasis on electrification and autonomous driving further stress the need for producing squeak- and rattle-free cars. Automotive manufacturers use several road disturbances for physical evaluation and verification of S&R. The excitation signals collected from these road profiles are also employed in subsystem shaker rigs and virtual simulations that are gradually replacing physical complete vehicle test and verification. Considering the need for a shorter lead time and the introduction of optimisation loops, it is necessary to have efficient and inclusive excitation load cases for robust S&R evaluation.
Technical Paper

Evaluation of Flow Paths due to Leakages of Flammable Liquids by the SPH Method: Application to Real Engines

2020-04-14
2020-01-1111
One of the most important safety issues for automotive engineering is to avoid any fire due to the ignition of flammable liquids, which may result from leaks. Fire risk is a combination of hot temperature, fast vaporisation and accumulation of vapor in a cavity. In IC engines, potentially flammable liquids are fuel and oil. To guarantee safety, flammable liquids must not come into contact with hot parts of the engine. Consequently, shields are designed to guide the flow path of possible leakages and to take any flammable liquid out of the hot areas. Simulation is a great help to optimize the shape of the shield by investigating a large number of possible leakages rapidly. Recent breakthroughs in numerical methods make it possible to apply simulations to industrial design concepts. The employed approach is based on the Lagrangian Smoothed Particle Hydrodynamics (SPH) method.
Technical Paper

Root Cause Analysis and Structural Optimization of E-Drive Transmission

2020-09-30
2020-01-1578
This paper describes the simulation tool chain serving to design and optimize the transmission of an electric axle drive from concept to final design with respect to NVH. A two-stage transmission of an eAxle is designed from scratch by the initial layout of gears and shafts, including the optimization of gear micro geometry. After the shaft system and bearings are defined, the concept design of the transmission housing is evaluated with the help of a basic topology optimization regarding stiffness and certain eigenfrequencies. In the next step a fully flexible multi-body dynamic (MBD) and acoustic analysis of the transmission is performed using internally calculated excitations due to gear contact and bearing interaction with shaft and gear dynamics for the entire speed and load range. Critical operating conditions in terms of shaft dynamics, structure borne noise and noise radiation are evaluated and selected as target for optimization in the following steps.
Journal Article

Modeling and Characterization of a Novel Porous Metallic Foam Inside Ducts

2015-06-15
2015-01-2203
A novel porous metallic foam has been studied in this work. This composite material is a mixture of resin and hollow spheres. It is lightweight, highly resistive to contamination and heat, and is capable of providing similar or better sound absorption compared to the conventional porous absorbers, but with a robust and less degradable properties. Several configurations of the material have been tested inside an expansion chamber with spatially periodic area changes. Bragg scattering was observed in some configurations with certain lattice constants. The acoustic properties of this material have been characterized from the measurement of the two-port matrix across a cylindrical sample. The complex density and speed of sound can be extracted from the transfer matrix using an optimization technique. Several models were developed to validate the effect of this metallic foam using Finite Elements and the Two-port Theory.
Journal Article

A Hybrid Development Process for NVH Optimization and Sound Engineering Considering the Future Pass-by Homologation Demands

2016-11-08
2016-32-0043
Beside hard facts as performance, emissions and fuel consumption especially the brand specific attributes such as styling and sound are very emotional, unique selling prepositions. To develop these emotional characters, within the given boundary conditions of the future pass-by regulation, it is necessary to define them at the very beginning of the project and to follow a consequent development process. The following paper shows examples of motorcycle NVH development work on noise cleaning and sound engineering using a hybrid development process combining front loading, simulation and testing. One of the discussed solutions is the investigation of a piston pin offset in combination with a crankshaft offset for the reduction of friction. The optimization of piston slap noise as a result of the piston secondary motion was performed by simulation. As another example a simulation based development was performed for the exhaust system layout.
Journal Article

Definition of Gearshift Pattern: Innovative Optimization Procedures Using System Simulation

2011-04-12
2011-01-0395
Today's powertrains are becoming more and more complex due to the increasing number of gear box types requiring gearshift patterns like conventional (equipped with GSI) and automatic-manual transmissions (AT, AMT), double clutch and continuous variable transmissions (DCT, CVT). This increasing variety of gear boxes requires a higher effort for the overall optimization of the powertrain. At the same time, it is necessary to assess the impact of different powertrains and control strategies on CO₂ emissions very early in the development process. The optimization of Gear Shift Patterns (G.S.P.) has to fulfill multiple constraints in terms of objective customers' requirements, like driveability, NVH, performance, emissions and fuel consumption. For these reasons, RENAULT and AVL entered an engineering collaboration in order to develop a dedicated simulation tool: CRUISE GSP.
Journal Article

Modeling Cycle-to-Cycle Variations in 0-D/1-D Simulation by Means of Combustion Model Parameter Perturbations based on Statistics of Cycle-Resolved Data

2013-04-08
2013-01-1314
The presented paper deals with a methodology to model cycle-to-cycle variations (CCV) in 0-D/1-D simulation tools. This is achieved by introducing perturbations of combustion model parameters. To enable that, crank angle resolved data of individual cycles (pressure traces) have to be available for a reasonable number of engine cycles. Either experimental data or 3-D CFD results can be applied. In the presented work, experimental data of a single-cylinder research engine were considered while predicted LES 3-D CFD results will be tested in the future. Different engine operating points were selected - both stable ones (low CCV) and unstable ones (high CCV). The proposed methodology consists of two major steps. First, individual cycle data have to be matched with the 0-D/1-D model, i.e., combustion model parameters are varied to achieve the best possible match of pressure traces - an automated optimization approach is applied to achieve that.
Technical Paper

Considerations on Engine Design and Fuelling Technique Effects on Qualitative Combustion in Alcohol Diesel Engines

1998-10-19
982530
This paper depicts the main topics of the experimental investigation on alcohol engine development field, aiming at the engineering targets for the emission levels. The first part of this study was focused on engine design optimization for running on ethanol mixed with poly-ethylene glycol (PEG) as ignition improver. It was shown that some design changes in compression ratio, turbine casing, injector nozzle configuration and exhaust pressure governor (EPG) activation, lead to a better engine thermodynamics and its thermochemistry. The second objective of this study was the investigation of engine performance and emission levels, when the ignition improver diethyl ether (DEE) would be generated on board via catalytically dehydration of ethanol, and used directly as soluble mixture or separately fumigated.
Technical Paper

Model Predictive Control of a Combined EGR/SCR HD Diesel Engine

2010-04-12
2010-01-1175
Achieving upcoming HD emissions legislation, Euro VI/EPA 10, is a challenge for all engine manufacturers. A likely solution to meet the NOx limit is to use a combination of EGR and SCR. Combining these two technologies poses new challenges and possibilities when it comes to optimization and calibration. Using a complete system approach, i.e., considering the engine and the aftertreatment system as a single unit, is important in order to achieve good performance. Optimizing the complete system is a tedious task; first there are a large number of variables which affect both emissions and fuel consumption (injection timing, EGR rate, urea dosing, injection pressure, pilot/post injections, for example). Secondly, the chemical reactions in the SCR catalyst are substantially slower than the dynamics of the diesel engine and the rest of the system, making the optimization problem time dependent.
Technical Paper

A Cross Domain Co-Simulation Platform for the Efficient Analysis of Mechatronic Systems

2010-04-12
2010-01-0239
Efficient integration of mechanics and microelectronics components is nowadays a must within the automotive industry in order to minimize integration risks and support optimization of the entire system. We propose in this work a cross domain co-simulation platform for the efficient analysis of mechatronic systems. The interfacing of two state-of-the-art simulation platforms provides a direct link between the two domains at an early development stage, thus enabling the validation and optimization of the system already during modeling phase. The proposed cross-domain co-simulation is used within our TEODACS project for the analysis of the FlexRay technology. We illustrate using a drive-by-wire use case how the different architecture choices may influence the system.
Technical Paper

Automated EMS Calibration using Objective Driveability Assessment and Computer Aided Optimization Methods

2002-03-04
2002-01-0849
Future demands regarding emissions, fuel consumption and driveability lead to complex engine and power train control systems. The calibration of the increasing number of free parameters in the ECU's contradicts the demand for reduced time in the power train development cycle. This paper will focus on the automatic, unmanned closed loop optimization of driveability quality on a high dynamic engine test bed. The collaboration of three advanced methods will be presented: Objective real time driveability assessment, to predict the expected feelings of the buyers of the car Automatic computer assisted variation of ECU parameters on the basis of statistical methods like design of experiments (DoE). Thus data are measured in an automated process allowing an optimization based on models (e.g. neural networks).
Technical Paper

Vehicle Sound Engineering by Modifying Intake / Exhaust Orifice Noise Using Simulation Software

2003-05-05
2003-01-1686
Apart of other aspects, the interior sound of a passenger car brand has to meet customer expectations. For optimizing the sound of a passenger car, target sounds have first to be established via the operating range of the vehicle. For an effective sound engineering approach an objective description and evaluation of vehicle interior sound is beneficial. Such an objective description guarantees the effective and reproducible implementation of the required brand sound in the vehicle development process. In such a process it is necessary to reduce on the one hand annoying undesired noise aspects and to create on the other hand the relevant and necessary noise parameters to meet the target sounds head on.
Technical Paper

A Correlation Methodology between AVL Mean Value Engine Model and Measurements with Concept Analysis of Mean Value Representation for Engine Transient Tests

2017-09-04
2017-24-0053
The use of state of the art simulation tools for effective front-loading of the calibration process is essential to support the additional efforts required by the new Real Driving Emission (RDE) legislation. The process needs a critical model validation where the correlation in dynamic conditions is used as a preliminary insight into the bounds of the representation domain of engine mean values. This paper focuses on the methodologies for correlating dynamic simulations with emissions data measured during dynamic vehicle operation (fundamental engine parameters and gaseous emissions) obtained using dedicated instrumentation on a diesel vehicle, with a particular attention for oxides of nitrogen NOx specie. This correlation is performed using simulated tests run within AVL’s mean value engine and engine aftertreatment (EAS) model MoBEO (Model Based Engine Optimization).
Technical Paper

Comparing Dynamic Programming Optimal Control Strategies for a Series Hybrid Drivetrain

2017-10-08
2017-01-2457
A two-state forward dynamic programming algorithm is evaluated in a series hybrid drive-train application with the objective to minimize fuel consumption when look-ahead information is available. The states in the new method are battery state-of-charge and engine speed. The new method is compared to one-state dynamic programming optimization methods where the requested generator power is found such that the fuel consumption is minimized and engine speed is given by the optimum power-speed efficiency line. The other method compared is to run the engine at a given operating point where the system efficiency is highest, finding the combination of engine run requests over the drive-cycle that minimizes the fuel consumption. The work has included the engine torque and generator power as control signals and is evaluated in a full vehicle-simulation model based on the Volvo Car Corporation VSIM tool.
Technical Paper

Turbocharger Speed Estimation via Vibration Analysis

2016-04-05
2016-01-0632
Due to demanding legislation on exhaust emissions for internal combustion engines and increasing fuel prices, automotive manufacturers have focused their efforts on optimizing turbocharging systems. Turbocharger system control optimization is difficult: Unsteady flow conditions combined with not very accurate compressor maps make the real time turbocharger rotational speed one of the most important quantities in the optimization process. This work presents a methodology designed to obtain the turbocharger rotational speed via vibration analysis. Standard knock sensors have been employed in order to achieve a robust and accurate, yet still a low-cost solution capable of being mounted on-board. Results show that the developed method gives an estimation of the turbocharger rotational speed, with errors and accuracy acceptable for the proposed application. The method has been evaluated on a heavy duty diesel engine.
Technical Paper

Analysis of Scavenged Pre-Chamber for Light Duty Truck Gas Engine

2017-09-04
2017-24-0095
An ongoing research and development activities on the scavenged pre-chamber ignition system for an automotive natural gas fueled engine is presented in this paper. The experimental works have been performed in engine laboratory at steady state conditions on a gas engine with 102 mm bore and 120 mm stroke, converted to a single cylinder engine. The in-house designed scavenged pre-chamber is equipped with a spark plug, fuel supply and a miniature pressure sensor for detailed combustion diagnostics. The engine was operated at constant speed, fully open throttle valve and four different fueling modes with or without spark discharge. A partly motored mode allowed direct evaluation of the pre-chamber heat release. The experimental data acquired in this research served as a validation data for the numerical simulations. The performed tests of prototypes and calculations have recently been expanded to include 3-D flow calculations in the Ansys Fluent software.
X