Refine Your Search

Topic

Author

Search Results

Technical Paper

Development of Sintered Bearing Material with Higher Corrosion Resistance for Fuel Pumps

2007-04-16
2007-01-0415
In recent years, due to a growing demand for improvement in the performance and reliability of automotive fuel pumps and the advancement of globalization, automotive fuel pumps are being used with inferior gasolines that include more sulfur, organic acids or compounds, compared to gasolines used in general regions. Conventionally, bearings in these fuel pumps have mainly been made of sintered bronze alloy. With this bronze alloy, however, it is difficult to achieve a significant improvement in the tribology characteristics of bearings, in order to meet the demands for performance improvement, etc., and corrosion is severe in inferior gasolines that contain highly-concentrated organic acids or sulfur and the corrosion products that accompany them. Therefore, in order to obtain fine tribology characteristics and superior corrosion resistance in gasolines with highly-concentrated organic acids and sulfur, various copper-based alloys were studied using the powder metallurgy process.
Technical Paper

Glow Plug with Combustion Pressure Sensor

2003-03-03
2003-01-0707
Combustion-pressure-data-based feedback control of fuel injection and EGR is the most promising diesel system, since it can reduce fuel consumption and emissions, as well as noise and vibration, and improve the evaluation efficiency for adapting engine performance to. We developed a combustion pressure sensor installed inside the glow plug. This is superior in maintainability and ease of installation, and can detect the combustion pressure in each cylinder at high accuracy and low cost, with no need for engine modification.
Technical Paper

Efficient Heat Pump System for PHEV/BEV

2017-03-28
2017-01-0188
As vehicle emission regulations become increasingly rigorous, the automotive industry is accelerating the development of electrified vehicle platforms such as Battery Electric Vehicles (BEV) and Plug-in Hybrid Electric Vehicles (PHEV). Since the available waste heat from these vehicles is limited, additional heat sources such as electric heaters are needed for cabin heating operation. The use of a heat pump system is one of the solutions to improve EV driving range at cold ambient conditions. In this study, an efficient gas-injection heat pump system has been developed, which achieves high cabin heating performance at low ambient temperature and dehumidification operation without the assistance of electric heaters in ’17 model year Prius Prime.
Technical Paper

Diesel Powertrain Energy Management via thermal Management and Electrification

2017-03-28
2017-01-0156
The coming Diesel powertrains will remain as key technology in Europe to achieve the stringent 2025 CO2 emission targets. Especially for applications which are unlikely to be powered by pure EV technology like Light Duty vehicles and C/D segment vehicles which require a long driving range this is the case. To cope with these low CO2 targets the amount of electrification e.g. in form of 48V Belt-driven integrated Starter Generator (BSG) systems will increase. On the other hand the efficiency of the Diesel engine will increase which will result in lower exhaust gas temperatures resulting in a challenge to keep the required NOx reduction system efficiencies under Real Drive Emissions (RDE) driving conditions. In order to comply with the RDE legislation down to -7 °C ambient an efficient thermal management is one potential approach. Commonly utilized means to increase exhaust gas temperature are late injection and/or intake throttling, which enable sufficient NOx reduction efficiency.
Technical Paper

Development of the Large Type Electric-Driven Refrigerator for the HV Truck

2017-03-28
2017-01-0137
In respect to the present large refrigerator trucks, sub-engine type is the main product, but the basic structure does not change greatly since the introduction for around 50 years. A sub-engine type uses an industrial engine to drive the compressor, and the environmental correspondence such as the fuel consumption, the emission is late remarkably. In addition, most of trucks carry the truck equipment including the refrigerator which consumes fuel about 20% of whole vehicle. Focusing on this point, the following are the reports about the system development plan for fuel consumption reduction of the large size refrigerator truck. New concept is to utilize electrical power from HV system to power the electric-driven refrigerator. We have developed a fully electric-driven refrigerator system, which uses regenerated energy that is dedicated for our refrigerator system.
Technical Paper

Display System for Vehicle to Pedestrian Communication

2017-03-28
2017-01-0075
In the future, autonomous vehicles will be realized. It is assumed that traffic accidents will be caused by the overconfidence to the autonomous driving system and the lack of communication between the vehicle and the pedestrian. We propose that one of the solutions is a display system to give the information the state of vehicle to pedestrians. In this paper, we studied how the information influences the motion of pedestrians. The vehicle gives the information, which is displayed on road by using of color light (red, yellow and blue), of the collision risk determined by the TTC (Time to Collision). The pedestrian is ordered to cross the road in several cases of the TTC. In the presence of the TTC information, the number of the pedestrians, who did not cross the road in the case of short TTC (red light is displayed), increased from 52% to 67%. It is cleared that the pedestrians determined whether they crossed the road or not by the information effectively.
Technical Paper

IGBT Gate Control Methods to Reduce Electrical Power Losses of Hybrid Vehicles

2016-04-05
2016-01-1224
Reducing the loss of the power control unit (PCU) in a hybrid vehicle (HV) is an important part of improving HV fuel efficiency. Furthermore the loss of power devices (insulated gate bipolar transistors (IGBTs) and diodes) used in the PCU must be reduced since this amounts to approximately 20% of the total electrical loss in an HV. One of the issues for reducing loss is the trade-off relationship with reducing voltage surge. To restrict voltage surge, it is necessary to slow down the switching speed of the IGBT. In contrast, the loss reduction requires the high speed switching. One widely known method to improve this trade-off relationship is to increase the gate voltage in two stages. However, accurate and high-speed operation of the IGBT gate control circuit is difficult to accomplish. This research clarifies a better condition of the two-stage control and designed a circuit that improves this trade-off relationship by increasing the speed of feedback control.
Technical Paper

Development of New Generation Battery Management ECU

2017-03-28
2017-01-1203
Recent electric vehicles use Li-ion batteries to power the main electric motor. To maintain the safety of the main electric motor battery using Li-ion cells, it is necessary to monitor the voltage of each cell. DENSO has developed a battery Electronic Control Unit (ECU) that contributes greatly to the reduction of the cost and the improvement of the reliability of the system. Each manufacturer has been developing a dedicated IC for monitoring the voltages of each cell of a battery. However, since the number of cells that can be monitored is limited, more than one IC is required to measure the voltages of a large number of cells. The increase in the number of ICs and the amount of insulator leads to the rise in system cost. DENSO has developed a dedicated IC that uses a proprietary high-breakdown voltage process, and which enables monitoring up to 24 cells with a single IC chip.
Technical Paper

Virtual Development for In-Vehicle Network Topology – A Case Study of CAN FD Physical Layer

2017-03-28
2017-01-0023
In-vehicle network communication is evolving faster speeds and higher performance capabilities, connecting the information possessed by ECU and sensors with the in-vehicle electronic systems which are continuing to develop. With the evolution of the complicated networks, it is becoming difficult to develop them without many verification of actual machine. On the other hand, as for the verification means required at the logic level or physical level for a network verification through ECU design, virtual verification in the whole vehicle is difficult due to speed increases and the sheer size of the system. Therefore, it is only applicable for systems which are limited to a domain or an area, and flexible and timely utilization would be difficult due to the changes in specifications.
Technical Paper

Reliability of SiC-MOSFET for Hybrid Vehicle

2012-04-16
2012-01-0337
This paper describes the reliability of silicon carbide (SiC) MOSFET. We clarified the relation between the lifetime of the gate oxide and the crystal defects. We fabricated MOS diodes using thermal oxidation and measured their lifetimes by TDDB (Time Dependent Dielectric Breakdown) measurement. The wear-out lifetime is sufficient for hybrid vehicle but many MOS diodes broke in shorter time. The breakdown points were defined by Photo-emission method. Finally, we classified the defects by TEM (Transmission Electron Microscopy). A TSD (Threading Screw Dislocation) plays the most important role in the lifetime degradation of the gate oxide. The lifetime of the gate oxide area, in which a TSD is included, is shorter by two orders of magnitude than a wear-out breakdown. The mechanism by which threading dislocations degrade the gate oxide lifetime was not discovered. To explain the degradation, we assumed two models, the shape effect and the oxide quality degradation.
Technical Paper

Development of Diesel Engine using New Fuel Injection System - Direct Monitoring of Fuel Injection Pressure using Injector with Built-in Sensor, and its Applications

2013-04-08
2013-01-1739
Recently, diesel engine manufacturers have been improving the tolerance of fuel injection quantity and timing in response to the strengthening of emissions regulations and the introduction of various kinds of diesel fuels. This paper describes the Intelligent Accuracy Refinement Technology (i-ART) system, which has been developed as a way of achieving substantially improved tolerances. The i-ART system consists of a fuel pressure sensor installed in the injectors. It calculates the injection quantity and timing at high speed using a dedicated microcomputer designed for pressure waveform analysis. As the injector can directly measure the fuel injection pressure waveform for each injection, it can compensate the injection quantity and timing tolerance at any time. Toyota Motor Corporation has introduced this system in Brazilian market vehicles. In Brazil, the PROCONVE L6 emissions regulations will be introduced in 2012, and the market also uses various kinds of diesel fuels.
Technical Paper

Measurement and Modeling on Wall Wetted Fuel Film Profile and Mixture Preparation in Intake Port of SI Engine

1999-03-01
1999-01-0798
In SI engines with port injection system, the injected fuel spray adheres surely on the port wall and the inlet valve, consequently, the spray-wall interaction process leads to the generation of unburned hydrocarbons and uncontrollable mixture formation. This paper deals with the fuel mixture preparation process including basic research on characteristics of the wall-wetted fuel film on a flat wall inside a constant volume vessel. In the experiments, iso-octane mixed with biacetyl as a tracer dopant was injected through a pintle type injector against a flat glass wall under the ambient conditions of atmospheric pressure and room temperature. The thickness of the adhered fuel film on the wall was quantitatively measured by using laser induced fluorescence (LIF) technique, which provides 2-D distribution information with high special resolution as a function of the injection duration, the impingement distance from the injector to the wall, and the impingement angle against the wall.
Technical Paper

Multiple-hole Nozzle Atomization for SI Engines

1999-03-01
1999-01-0564
Fuel atomization is known as an effective means of reducing exhaust emissions from internal combustion engines. In this study, we present a cost-effective atomization method for multiple-hole nozzle gasoline injection systems that requires no auxiliary device or external energy source to carry out atomization. While many studies have been conducted before on the atomization mechanism, most assume that the key to atomization lies in the nozzle configuration or the interaction between the fuel spray and ambient air. We, on the other hand, paid particular attention to the fuel nozzle upstream flow and found how it plays a crucial role in fuel atomization. In case of using multiple-hole nozzle in particular, atomization is greatly influenced by impingement of upstream flow of the fuel nozzle, which leads to rapid directional change in the fuel flow.
Technical Paper

High Resolution LiDAR Based on Single Chip SPAD Array

2019-04-02
2019-01-0119
It is important that Advanced Driver Assistance Systems (ADAS) and Automated Driving Systems (AD) detect on-road objects, road vehicles and pedestrians. The typical detection devices mounted on ADAS and AD include a camera, a millimeter-wave radar and a Light Detection And Ranging (LiDAR). Since LiDAR can obtain accurate distance and fine spatial resolution due to its short wavelength, it is expected that small objects such as a tire can be detected. However, the conventional LiDAR is equipped with multiple light transmitters and light receivers such as avalanche photo diodes. This causes LiDAR system to be expensive and large in size. Aiming to reduce the cost and size of LiDAR, we employed Single-Photon Avalanche Diode (SPAD) which can be fabricated by CMOS process and easily arrayed. We also developed “Single Chip SPAD Array“ in which the two-dimensional array of SPAD and a signal processing block of range calculation were integrated into a single chip.
Technical Paper

Research on the Threshold of Scare or Secure by Assessing Braking in Advanced Driver Assistance System

2016-04-05
2016-01-0111
Establishing drivers’ trust in the automated driving system is critical to the success of automated vehicle. The focus of this paper is how to make drivers drive automated vehicles with confidence during braking events. In this study, 10 participants drove a test vehicle and experienced 24 different deceleration settings each. Prior to each drive, we indicated to each participant the expected brake starting and stopping position. During each drive, participants would first maintain a set speed, and then stop the vehicle when they see a signal to apply the brakes. After each drive, we asked the participants’ perceived safety about the deceleration setting he/she just experienced. The results revealed that ‘jerk’ have significant influence on drivers’ perceived safety.
Technical Paper

Research in OFDM-Based High-Speed In-Vehicle Network Connectivity for Cameras and Displays

2021-04-06
2021-01-0151
Growing trends of connected and autonomous vehicles have pushed for increased resolutions of cameras to 8Mpix and displays to 4K/8K, leading to requirements for high-speed interfaces that support 10Gbps and beyond. Unlike data center or enterprise networks which normally operates under controlled indoor environments, in-vehicle networks are required to operate in harsh temperature and interference environments. Due to cost restrictions, the use of single pair wire is prevalent for in-vehicle networks. In general, as data transmission speed increase, signal spectrum spreads across greater frequency range. Since insertion loss of a channel increases in proportion to signal frequency, it becomes more difficult to secure SNR (signal-to-noise ratio) margins as bit rate increases. This makes it increasingly difficult for a device (e.g. ECUs, sensors, and displays) with high-speed communication interface to meet EMC (electromagnetic compatibility) criteria imposed by automotive OEMs.
Technical Paper

Dynamically Adjustable LiDAR with SPAD Array and Scanner

2021-04-06
2021-01-0091
An important function of an Automated Driving (AD) system is to detect objects including vehicles and pedestrians on the road. Typical devices for detecting those objects include cameras, millimeter-wave RADAR, and light detection and ranging (LiDAR). LiDAR uses the flight time of a short-wavelength electromagnetic wave. Because of that LiDAR is expected to find even small objects such as tire fragments on a road in high resolution. The detection performance required for LiDAR depends on the operational design domain (ODD). For example, while a vehicle is travelling at high speeds, LiDAR needs to detect apparently small objects at long distances, and while it is travelling at low speeds, LiDAR has to detect objects over a wide angular range. Conventional LiDAR is developed to satisfy all requirements, providing performance including detection distance, resolution, and angle of view tends to expose issues such as cost and size when it is mounted onboard.
Technical Paper

Evolution of Gasoline Direct Injection System for Reduction of Real Mode Emission

2019-04-02
2019-01-0265
Continuous improvement of gasoline engine emissions performance is required to further protect the global environment and also the impact of emissions on a local level. During real world driving, transient engine operation and variation in fuel injection, airflow, and wall temperature are key factors to be controlled. Due to the limited opportunity for optimization of engine control, generation of a well-mixed fuel spray is necessary to create a suitable combustion environment to minimize emissions. Optimum spray performance achieves minimum surface wetting as well as promoting evaporation and diffusion if wetting occurs. Improvement in spray homogeneity is an important step to achieve this. Higher fuel pressure is initially considered to achieve improvements, as it is expected to improve mixture formation by reduction of wall wetting due to high atomization and lower penetration, as well as improvement in spray homogeneity.
Technical Paper

Ultra-High Fuel Pressure in GDI to Suppress Particulate Formation during Warming-Up and Load Transients

2023-04-11
2023-01-0239
This study investigates if particulates from a GDI engine can be significantly suppressed by use of ultra-high injection pressures under 2 different engine conditions known to be associated with high particulate numbers (PN): warm-up and transients. Experiments were carried out in a single-cylinder GDI engine equipped with an endoscope connected to a high-speed camera to enable combustion visualization. To mimic the warming-up, the coolant temperature was varied between 20 °C and 90 °C. A Diesel injector with modified nozzle was used and the injection pressures were varied between 400 and 1500 bar. The results revealed that increasing the fuel injection pressure decreased engine out HC and PN under warming-up conditions. However, the coolant water temperature was the most dominant factor affecting the emissions. For coolant temperature of 20 °C, the use of 1500 bar fuel injection pressure in comparison to lower fuel pressures resulted in significantly lower PN.
Technical Paper

Modeling and Simulation Analysis of Electric Vehicle Thermal Management System Based on Distributed Parameter Method

2022-03-29
2022-01-0211
The distributed parameter method is used to establish the dynamic simulation model of the electric vehicle thermal management system and various parts, and the finite difference method is used to solve the model. A thermal management system model with same structure is established by AMESIM, and the accuracy of the dynamic simulation model is verified by comparing the deviation of the calculation result between this dynamic simulation model and AMESIM. Based on the established model, the influence of expansion valve opening on the temperature of battery pack and the influence on the heating comfort of the cabin were studied. A control strategy for the rapid cooling of the battery pack was proposed. The results show that the model established by the distributed parameter method provides quite well agreement with commercial equivalent software and can well reflect the flow state of the refrigerant in different zones of the same component.
X