Refine Your Search

Topic

Search Results

Technical Paper

Engine Cambore Distortion Analysis From Design to Manufacturing

2004-03-08
2004-01-1449
The cambore distortion is one of major concerns of an engine performance. A good design does not ensure a quality product. To meet product performance requirements, engineering community turns efforts to both design and manufacturing at an early stage of product development. This paper will discuss this process by providing an example of design and manufacturing of an overhead cambore. In this study a methodology to evaluate bore distortions is introduced. FEA cambore distortion analysis will use it to provide necessary data so that the product team can make a sound decision.
Technical Paper

Effective Computer-Aided Engineering in the Automotive Product Development Stages

2001-03-05
2001-01-0764
This paper show how the automotive product development process is presented in four distinct stages. The specific type of task, to be presented at each stage, is discussed. Specific CAE (Computer-Aided-Engineering) tasks, such as FEA (Finite Element Analysis), to be used at each stage are discussed. Detailed steps to follow are presented, as well as a check list of tasks are included. The changes and increased effectiveness (developed over 15 years of utilization) are discussed.
Technical Paper

Overall Results: Phase I Ad Hoc Diesel Fuel Test Program

2001-03-05
2001-01-0151
The future of diesel-engine-powered passenger cars and light-duty vehicles in the United States depends on their ability to meet Federal Tier 2 and California LEV2 tailpipe emission standards. The experimental purpose of this work was to examine the potential role of fuels; specifically, to determine the sensitivity of engine-out NOx and particulate matter (PM) to gross changes in fuel formulation. The fuels studied were a market-average California baseline fuel and three advanced low sulfur fuels (<2 ppm). The advanced fuels were a low-sulfur-highly-hydrocracked diesel (LSHC), a neat (100%) Fischer-Tropsch (FT100) and 15% DMM (dimethoxy methane) blended into LSHC (DMM15). The fuels were tested on modern, turbocharged, common-rail, direct-injection diesel engines at DaimlerChrysler, Ford and General Motors. The engines were tested at five speed/load conditions with injection timing set to minimize fuel consumption.
Technical Paper

Engine Internal Dynamic Force Identification and the Combination with Engine Structural and Vibro-Acoustic Transfer Information

2001-04-30
2001-01-1596
The vibration-generating mechanisms inside an engine are highly non-linear (combustion, valve operation, hydraulic bearing behavior, etc.). However, the engine structure, under the influence of these vibration-generating mechanisms, responds in a highly linear way. For the development and optimization of the engine structure for noise and vibration it is beneficial to use fast and ‘simple’ linear models, like linear FE-models, measured modal models or measured FRF-models. All these models allow a qualitative assessment of variants without excitation information. But, for true optimization, internal excitation spectra are needed in order to avoid that effort is spent to optimize non-critical system properties. Unfortunately, these internal excitation spectra are difficult to measure. Direct measurement of combustion pressure is still feasible, but crank-bearing forces, piston guidance forces etc. can only be identified indirectly.
Technical Paper

Fatigue Failure of Rollers in Crankshaft Fillet Rolling

2004-03-08
2004-01-1498
In this paper, the fatigue failure of the primary roller used in a crankshaft fillet rolling process is investigated by a failure analysis and a two-dimensional finite element analysis. The fillet rolling process is first discussed to introduce the important parameters that influence the fatigue life of the primary roller. The cross sections of failed primary rollers are then examined by an optical microscope and a Scanning Electron Microscope (SEM) to understand the microscopic characteristics of the fatigue failure process. A two-dimensional plane strain finite element analysis is employed to qualitatively investigate the influences of the contact geometry on the contact pressure distribution and the Mises stress distribution near the contact area. Fatigue parameters of the primary rollers are then estimated based on the Findley fatigue theory.
Technical Paper

Identification of Malfunctions During EMC Tests in Networked Vehicles

2004-03-08
2004-01-1707
Modern vehicles contain a multitude of networked electronics. This feature causes distributed functions in distributed electronics. Malfunctions occurring during EMC testing cannot be allocated precisely without detailed knowledge of the data streams. The electromagnetic environment during EMC-testing limits the possibilities of using standard solutions to detect these malfunctions. The paper will present a new tool, which is able to track the data streams in a CAN-Bus system during EMC-testing. By integrating EMC related parameters in the existing data stream of the vehicle's data bus, it is possible to keep a record of malfunctions as they occur.
Technical Paper

Driver out-of-position injuries mitigation and advanced restraint features development

2001-06-04
2001-06-0069
Airbag-related out-of-position (OOP) injuries in automotive crash accident have drawn great attention by public in recent years. In the interim-final rule of Federal Motor Vehicle Safety Standards that NHTSA issued in May 2000, OOP static test becomes a mandatory requirement of new regulation and will be phased in starting from year 2003. Due to the complexities and constraints of vehicle design, such as extreme vehicle styling and packaging as well as multiple safety requirements, it is a great challenge for both restraint safety suppliers and automobile manufacturers work together to come up with proper designs to meet requirements of new regulation and provide additional protection for both in-position and OOP occupants at various vehicle crash scenarios. In this paper, the technique of developing advanced restraint system and mitigating the OOP injuries is described.
Technical Paper

Performance Driver Information Systems, Enhancing the Fun-to-Drive Equation

2002-10-21
2002-21-0041
Most driver information systems offered in automobiles today display vehicle speed, fluid levels, fluid temperatures, and some basic diagnostic information (warnings, panel lamps). Optional driver information systems add to this list by offering fuel economy information, compass heading, outside temperature and other comfort and convenience related items. Very few provide information in regards to the real performance of the vehicle, its motion in 3-dimensional space, or the driver’s skill and performance. Making this information available to the driver can enhance the “fun-to-drive” aspects of driving.
Technical Paper

An Impact Pulse-Restraint Energy Relationship and Its Applications

2003-03-03
2003-01-0505
This paper presents an energy relationship between vehicle impact pulses and restraint systems and applies the relationship to formulations of response factors for linear and nonlinear restraints. It also applies the relationship to derive optimal impact pulses that minimize occupant response for linear and nonlinear restraints. The relationship offers a new viewpoint to impact pulse optimization and simplifies the process mathematically. In addition, the effects of different vehicle impact pulses on the occupant responses with nonlinear restraints are studied. Finally, concepts of equivalent pulses and equal intensity pulses are presented for nonlinear restraints.
Technical Paper

OOP Response of THOR and Hybrid-III 50th% ATDs

2006-04-03
2006-01-0065
The responses of the THOR and the Hybrid-III ATDs to head and neck loading due to a deploying air bag were investigated. Matched pair tests were conducted to compare the responses of the two ATDs under similar loading conditions. The two 50th percentile male ATDs, in the driver as well as the passenger positions, were placed close to the air bag systems, in order to enhance the interaction between the deploying air bag and the chin-neck-jaw regions of the ATDs. Although both ATDs nominally meet the same calibration corridors, they differ significantly in their kinematic and dynamic responses to interaction with a deploying air bag. The difference between the structural designs of the Hybrid-III's and the THOR's neck appears to result in significant differences in the manner in which the loads applied on the head are resisted.
Technical Paper

Numerical Evaluation of TRL Barrier’s Compatibility Assessment Capability

2006-04-03
2006-01-1133
Barrier impacts are routinely used to estimate the impact response of vehicles in vehicle-to-vehicle crashes. One area of investigation is the detection of the secondary energy absorbing structures provided for under-/over-ride mitigation as a result of increased structural engagement -- improved geometric compatibility. The flat rigid barrier and the Transportation Research Laboratory’s (TRL) full width honeycomb barrier are commonly considered. In the present study, a vehicle-to-vehicle impact that exhibited no under-/over-ride condition was compared to finite element analysis of vehicle impacts to the two different barriers in order to evaluate their ability to detect the secondary energy absorbing structure. This study demonstrates that the rigid barrier and the TRL barrier yield similar quantitative information with regard to vehicle-to-vehicle crashes.
Technical Paper

A Novel Approach for Improving Transfer Gear Noise in Front Wheel Drive Transmissions

2005-05-16
2005-01-2451
Pure tone whine noises produced by transmission gear meshing can be a particular annoyance to vehicle occupants. In this case the gear meshing was exciting a resonance within the transaxle, resulting in an especially obtrusive pure tone noise within a narrow speed range. This report presents the identification of the resonating component and the development of a novel approach to eliminate the noise problem. Specifically a laminated steel (MPM) disk was fastened to the face of the gear to provide damping. Knowledge of the gear's mode of vibration was used to optimize the effectiveness of the damping treatment. This approach is proven to be effective via experimentally verified prototypes
Technical Paper

Damped Accelerometers and Their Use in Vehicle Crash Testing

2005-04-11
2005-01-0746
At one time it was considered imperative to collect high frequency accelerometer data for accurate analysis. As a result current FMVSS regulations and SAE J2570 require the use of accelerometers with damping ratio of 0.05 or less (designated as undamped). This prevents the use of damped accelerometers for regulated channels. Damped accelerometers can provide comparable data and in some cases better data than undamped accelerometers, as long as they meet specific minimum requirements. To collect the most useful data, damped accelerometers should be added to the tool box of transducers used by crash test facilities.
Technical Paper

A Finite Element Model of the TRL Honeycomb Barrier for Compatibility Studies

2005-04-11
2005-01-1352
A finite element model of the Transport Research Laboratory (TRL) honeycomb barrier, which is being proposed for use in vehicle compatibility studies, has been developed for use in LSDYNA. The model employs penalty parameters to enforce continuity between adjacent finite elements of the honeycomb barrier. Results of impact tests with indentors of various shapes and sizes were used to verify the performance of the computational model. Numerical simulations show reasonably good agreement with the test results.
Technical Paper

A 2D Vehicle-to-Vehicle Crash Model for Fleet Analysis (Part-I)

2005-04-11
2005-01-1938
This paper presents a 2D model for frontal vehicle-to-vehicle crashes that can be used for fleet modeling. It presents the derivational details and a preliminary assessment of the model. The model is based on rigid-body collision principles, enhanced adequately to represent energy dissipation and lateral engagement that plays a significant role in oblique frontal vehicle-to-vehicle crashes. The model employs the restitution and the apparent friction in order to represent dissipation and engagement respectively. It employs the impulse ellipse to identify the physical character of the crash, based on the principal directions of impulse. The enhancement of the rigid body collision model with restitution and apparent friction is based on collision simulations that use very simple finite element vehicle representations. The dependence of the restitution and the apparent friction on the incidence angle, the frontal offset, and the mass ratio, as predicted by the 2D model, has been presented.
Technical Paper

Effects of Roller Geometry on Contact Pressure and Residual Stress in Crankshaft Fillet Rolling

2005-04-11
2005-01-1908
In this paper, the effects of roller geometry on contact pressure and residual stress in crankshaft fillet rolling are investigated by a two-dimensional finite element analysis. The fillet rolling process is first introduced to review some characteristics of the rolling tools. A two-dimensional plane strain finite element analysis is then employed to qualitatively investigate the influence of the roller geometry. Computations have been conducted for eight different contact geometries between the primary roller and the secondary roller to investigate the geometry effect on the contact pressure distribution on the edge of the primary roller. Fatigue parameters of the primary rollers are also estimated based on the Findley fatigue theory. Then, computations have been conducted for three different contact geometries between the primary roller and the crankshaft fillet to investigate the geometry effect on the residual stress distribution near the crankshaft fillet.
Technical Paper

Comparison of Frontal Crashes in Terms of Average Acceleration

2000-03-06
2000-01-0880
The paper presents a comparison between the acceleration pulses of vehicle-to-vehicle crash tests with those of different single-vehicle crash tests. The severity of the full frontal rigid barrier test is compared with that of the vehicle- to-vehicle crash test based on average acceleration and time-to-zero-velocity. Based on this a 30mph full frontal rigid barrier test is found equivalent to a 41mph vehicle-to-vehicle crash. A reduced speed of 22mph for full frontal rigid barrier test is found to represent vehicle-to- vehicle crashes with 50%-100% overlap, with each vehicle travelling at 30mph. The paper also presents a comparison of the acceleration pulses from different crash tests based on the pulse shape and the pulse phase cross-correlation. None of the single-vehicle crash tests have been found to resemble vehicle-to-vehicle crashes in terms of the pulse shape and the pulse phase.
Technical Paper

Optimization of Single-Point Frontal Airbag Fire Threshold

2000-03-06
2000-01-1009
The relationship of the airbag fire-distribution as a function of impact velocity to the airbag fire-time is studied through the use of an optimization procedure. The study is conducted by abstracting the sensor algorithm and its associated constraints into a simple mathematical formulation. An airbag fire objective function is constructed that integrates the fire-rate and fire-time requirements. The function requires the input of a single acceleration time history; it produces an output depending on the airbag fire condition. Numerical search of the optimal fire threshold curve is achieved through parameterizing this curve and applying a modified simplex search optimization algorithm that determines the optimal threshold function parameters without computing the complete objective function in the parameter space. Numerical results are given to show the effectiveness and potential difficulties with the automatic search scheme.
Technical Paper

A Study on the Effects of Simulation Parameters on Springback Prediction

2000-03-06
2000-01-1109
The use of commercial finite element analysis (FEA) software to perform stamping feasibility studies of automotive components has grown extensively over the last decade. Although product and process engineers have now come to rely heavily on results from FEA simulation for manufacturability of components, the prediction of springback has still not been perfected. Springback prediction for simple geometries is found to be quite accurate while springback prediction in complex components fails to compare with experimental results. Since most forming simulation FEA software uses a dynamic explicit solution method, the choice of various input parameters greatly affects the prediction of post formed stresses in the final component. Accurate stress prediction is critical for determination of springback, therefore this study focuses on the effects of some of the simulation parameters such as, element size, tool/loading speed and loading profile.
Technical Paper

A Stochastic Approach for Occupant Crash Simulation

2000-04-02
2000-01-1597
Stochastic simulation is used to account for the uncertainties inherent to the system and enables the study of crash phenomenon. For analytical purposes, random variables such as material crash properties, angle of impact, human response and the like can be characterized using statistical models. The methodology outlined in this approach is based on using the information about the probability of random variables along with structural behavior in order to quantify the scatter in the structural response. Thus the analysis gives a more complete picture of the actual simulation. Practical examples for the use of this technique are demonstrated and an overview of this approach is presented.
X