Refine Your Search

Topic

Author

Search Results

Journal Article

Real-time Sensing of Particulate Matter in a Vehicle Exhaust System

2017-03-28
2017-01-1639
Onboard diagnostic regulations require performance monitoring of diesel particulate filters used in vehicle aftertreatment systems. Delphi has developed a particulate matter (PM) sensor to perform this function. The objective of this sensor is to monitor the soot (PM) concentration in the exhaust downstream of the diesel particulate filter which provides a means to calculate filter efficiency. The particulate matter sensor monitors the deposition of soot on its internal sensing element by measuring the resistance of the deposit. Correlations are established between the soot resistance and soot mass deposited on the sensing element. Currently, the sensor provides the time interval between sensor regeneration cycles, which, with the knowledge of the exhaust gas flow parameters, is correlated to the average soot concentration.
Journal Article

HCCI Load Expansion Opportunities Using a Fully Variable HVA Research Engine to Guide Development of a Production Intent Cam-Based VVA Engine: The Low Load Limit

2012-04-16
2012-01-1134
While the potential emissions and efficiency benefits of HCCI combustion are well known, realizing the potentials on a production intent engine presents numerous challenges. In this study we focus on identifying challenges and opportunities associated with a production intent cam-based variable valve actuation (VVA) system on a multi-cylinder engine in comparison to a fully flexible, naturally aspirated, hydraulic valve actuation (HVA) system on a single-cylinder engine, with both platforms sharing the same GDI fueling system and engine geometry. The multi-cylinder production intent VVA system uses a 2-step cam technology with wide authority cam phasing, allowing adjustments to be made to the negative valve overlap (NVO) duration but not the valve opening durations. On the single-cylinder HVA engine, the valve opening duration and lift are variable in addition to the NVO duration. The content of this paper is limited to the low-medium operating load region at 2000 rpm.
Technical Paper

CFD-Aided Development of Spray for an Outwardly Opening Direct Injection Gasoline Injector

1998-02-23
980493
A high pressure outwardly opening fuel injector has been developed to produce sprays that meet the stringent requirements of gasoline direct injection (DI) combustion systems. Predictions of spray characteristics have been made using KIVA-3 in conjunction with Star-CD injector flow modeling. After some modeling iterations, the nozzle design has been optimized for the required flow, injector performance, and spray characteristics. The hardware test results of flow and spray have confirmed the numerical modeling accuracy and the spray quality. The spray's average Sauter mean diameter (SMD) is less than 15 microns at 30 mm distance from the nozzle. The DV90, defined as the drop diameter such that 90% of the total liquid volume is in drops of smaller diameter, is less than 40 microns. The maximum penetration is about 70 mm into air at atmospheric pressure. An initial spray slug is not created due to the absence of a sac volume.
Technical Paper

Palladium/Rhodium Dual-Catalyst LEV 2 and Bin 4 Close-Coupled Emission Solutions

2007-04-16
2007-01-1263
Dual-monolith catalyst systems containing Pd/Rh three-way catalysts (TWCs) provide effective emission solutions for LEV2/Bin 5 and Bin 4 close-coupled applications at low PGM loadings. These systems combine washcoat technology and PGM distribution for front and rear catalysts resulting in optimal hydrocarbon and NOx light-off and transient NOx control. The dual-catalyst [Pd/Rh + Pd/Rh] systems are characterized as a function of Pd-Rh content, PGM location, and catalyst technology for 4-cyl [close-coupled + underfloor] systems and 6-cyl close-coupled applications. The current Pd/Rh dual-catalyst converters significantly reduce NOx emissions compared to earlier [Pd + Pt/Rh] or [Pd + Pd/Rh] LEV/ULEV systems by utilizing uniform Rh distribution and new OSC materials. These new design strategies particularly impact NOx performance, especially during transient A/F excursions.
Technical Paper

Comparison between FR-4 and Ceramic Substrate

2008-10-07
2008-36-0361
This paper investigates the application of thick film hybrid circuit technology on ceramic substrate in comparison to the main stream substrate FR-4 (Flame Retardant 4) for PCB implementation. The study is based on computer models for these very substrates in order to simulate the propagation of heat through convection and conduction within the material boundaries. In order to simulate electronic components surface mounted, different heat sources are randomly arranged on physical contact to the surface of the material under investigation. The results emphasize and discern the usage of both substrates and its most suitable environment verifying the application towards vehicular integration. Future study may include experimental analysis for simulated data verification and validation of thick film hybrid circuit technology for the automotive industry.
Technical Paper

Laser Welding: An Exploratory Study towards Continuous Improvement on Stainless Steel Welding Joints

2009-10-06
2009-36-0330
The utilization of Laser welding process has increased during last years in several areas of industry, due to many benefits that can be achieved with this technology, such as: flexibility, productivity and quality. Thus, the optimization of Laser welding processes has been considered as a “green field” to be explored by Laser manufacturers, automation companies and process/project engineers. Nowadays there are few researches that provide a roadmap for Laser welding processes improvement that approaches both the aspects and characteristics applied to evaluate the Laser weld application performance. Therefore, this paper has per its main purpose through an exploratory study to provide parameters toward continuous improvement of Laser welding process considering both types of Lasers: Laser spot weld and Laser seam weld of stainless steel joints, thus this work may be considered as theoretical and practical reference to be applied by people involved with Laser welding applications.
Technical Paper

Automotive Miniaturization Trend: Challenges for Wiring Harness Manufacturing

2010-10-06
2010-36-0160
One of the most evident trends in automotive sector is miniaturization. It is related to considerable benefits due to the potential of mass reduction, cost reduction and efficiency improvement. It involves many different automobile components and most of them are facing challenges to achieve the targets defined by car makers and final consumers. Specifically for wiring harness, it seems to be many manufacturing and process challenges to be surpassed in order to fully perceive the benefits expected with miniaturization, internally and externally. So this article aims to present an overview of literature as well as reporting of experts on this issue mentioning some of the challenges that global automotive wiring harness manufacturers are facing. Subjects as assembly automation, terminal connection and small gauge cables are discussed in the article and also a general overview of how those problems are being addressed in order to meet customer requirements.
Technical Paper

Fatigue Behavior of Semi-Solid Formed A357-T6 Aluminum

2001-03-05
2001-01-0413
The fundamental relationship between semi-solid processing and microstructure and their effect on the flow characteristics of semi-solid metals have been studied for several years. However, how the process related microstructure influences fatigue properties has not been given the same attention. This study examines the influence of process-related microstructure on the fatigue properties of semi-solid formed A357 alloys. High-solid-fraction (62% solid) and low-solid-fraction (31% and 36% solid) semi-solid formed A357 was tested in axial fatigue with a stress ratio (R) equal to -1. The high solid fraction (HSF) material had better fatigue properties than the low solid fraction (LSF) material. This is attributed to the fatigue crack initiation mechanisms, as related to the fatigue crack initiation features and the strengths of the materials.
Technical Paper

Reliability of Resonant Micromachined Sensors and Actuators

2001-03-05
2001-01-0618
There are an increasing number of applications for resonant micromachines. Accelerometers, angular rate sensors, voltage controlled oscillators, pressure and chemical sensors have been demonstrated using this technology. Several of these devices are employed in vehicles. Vibrating devices have been made from silicon, quartz, GaAs, nickel and aluminum. Resonant microsystems are in constant motion and so present new challenges in the area of reliability for vehicular applications. The impact of temperature extremes, cyclic fatigue, stiction, thermal and mechanical shock on resonant device performance is covered.
Technical Paper

Characterization of the Dynamic Response of a Cylinder Deactivation Valvetrain System

2001-03-05
2001-01-0669
This paper presents a theoretical and experimental study of a cylinder deactivation valvetrain system for the integration into an Engine Management System (EMS). A control-oriented lumped parameter model of the deactivation valvetrain system is developed and implemented using Matlab/Simulink, and validated by experimental data. Through simulation and experimental data analysis, the effect of operating conditions on the dynamic response is captured and characterized, over a wide range of operating conditions. The algorithm provides a basis for the calibration of the deactivation hardware. The generic characterization of the dynamic response can simplify the calibration parameters for the implementation in engine management systems.
Technical Paper

The Solution for Steady State Temperature Distribution in Monolithic Catalytic Converters

2001-03-05
2001-01-0941
This paper presents a simplified thermal model for round catalytic converters in steady state operation. Using this model, the analytic solution for the temperature distribution in the monolithic substrate is obtained. This analytic solution in the substrate is, then, combined with those in the intumescent mat [1] and the metal shell to obtain the temperature profile in the radial direction of the converter except for three unknown temperatures at the three material interfaces, which can be solved using an Excel application program. This analytical temperature solution facilitates the studies of the effects of various design parameters such as the exhaust gas temperature, exhaust gas flow rate, substrate cell geometry, converter dimensions, and ambient temperature and flow, etc.
Technical Paper

Comparative Study of Hybrid Powertrain Strategies

2001-08-20
2001-01-2501
Hybrid electric vehicles have the potential to reduce air pollution and improve fuel economy without sacrificing the present conveniences of long range and available infrastructure that conventional vehicles offer. Hybrid vehicles are generally classified as series or parallel hybrids. A series hybrid vehicle is essentially an electric vehicle with an on-board source of power for charging the batteries. In a parallel hybrid vehicle, the engine and the electric motor can be used to drive the vehicle simultaneously. There are various possible configurations of parallel hybrid vehicles depending on the role of the electric motor/generator and the engine. In this paper, a comparative study of the drivetrains of five different hybrid vehicles is presented. The underlying design architectures are examined, with analysis as to the tradeoffs and advantages represented in these architectures.
Technical Paper

Instrument Panel Skin Manufactured with 100% Recycled TPO Material

2002-03-04
2002-01-1262
Desiring to push thermoplastic poly-olefin (TPO) technology to its fullest limits and to confirm our position as the leader in the manufacturing of environmentally friendly TPO instrument panels, we have designed a process to manufacture 100% recycled instrument panel skins. This closed-loop process begins with extruding 100% recycled TPO flake into sheet stock to be painted and vacuum formed. The painted sheet is vacuum formed and the offal is ground into regrind flake, ready to be extruded again, thus completing the closed-loop process. This paper will describe a 100% closed loop recycling process for TPO instrument panels, discuss the intense validation process for recycled material and prove the robustness and durability of this interior solution.
Technical Paper

Solid Oxide Fuel Cell Auxiliary Power Unit - A Development Update

2002-03-04
2002-01-0411
Delphi Automotive Systems and BMW are jointly developing Solid Oxide Fuel Cell (SOFC) technology for application in the transportation industry primarily as an on-board Auxiliary Power Unit (APU). In the first application of this joint program, the APU will be used to power an electric air conditioning system without the need for operating the vehicle engine. The SOFC based APU technology has the potential to provide a paradigm shift in the supply of electric power for passenger cars. Furthermore, by supplementing the conventional fuel with reformate in the internal combustion engine, extremely low emissions and high system efficiencies are possible. This is consistent with the increasing power demands in automobiles in the new era of more comfort and safety along with environmental friendliness. Delphi Automotive Systems and BMW were successful in demonstrating an Auxiliary Power Unit (APU) based on Solid Oxide Fuel Cell (SOFC) technology in February, 2001.
Technical Paper

Implications of 3-D Internal Flow Simulation on the Design of Inward-Opening Pressure-Swirl Injectors

2002-10-21
2002-01-2698
A parametric study on the effects of critical injector design parameters of inwardly-opening pressure-swirl injectors was carried out using 3-D internal flow simulations. The pressure variation and the integrated momentum flux across the injector, as well as the flow distributions and turbulence structure at the nozzle exit were analyzed. The critical flow effects on the injector design identified are the swirler efficiency, discharge coefficient, and turbulence breakup effects on the spray structure. The study shows that as a unique class of injectors, pressure-swirl injectors is complicated in fluid mechanics and not sufficiently characterized or optimized. The swirler efficiency is characterized in terms of the trade-off relationship between the swirl-to-axial momentum-flux ratio and pressure drop across the swirler. The results show that swirl number is inversely proportional to discharge coefficient, and that hole diameter and swirler height is the most dominant parameters.
Technical Paper

Impact of Alkali Metals on the Performance and Mechanical Properties of NOx Adsorber Catalysts

2002-03-04
2002-01-0734
Performance of two types of NOx adsorber catalysts, one based on Ba and the other based on Ba with alkali metals, was compared fresh and after thermal aging. Incorporation of sodium(Na), potassium(K) and cesium(Cs) into NOx adsorber washcoat containing barium significantly increases the NOx conversions in the temperature range of 350-600°C over that of the alkali metal free NOx adsorber catalysts. NOx performance benefit and HC performance penalty were observed on both engine dynamometer and vehicle tests for the “Ba+alkali metals” NOx adsorber catalysts. “Ba+alkali metals” NOx adsorber catalysts also demonstrate superior sulfur resistance with better NOx performance after repeated sulfur poisonings and desulfations over the “Ba based” NOx adsorber catalysts.
Technical Paper

Development of Electrical-Electronic Controls for a Gasoline Direct Injection Compression Ignition Engine

2016-04-05
2016-01-0614
Delphi is developing a new combustion technology called Gasoline Direct-injection Compression Ignition (GDCI), which has shown promise for substantially improving fuel economy. This new technology is able to reuse some of the controls common to traditional spark ignition (SI) engines; however, it also requires several new sensors and actuators, some of which are not common to traditional SI engines. Since this is new technology development, the required hardware set has continued to evolve over the course of the project. In order to support this development work, a highly capable and flexible electronic control system is necessary. Integrating all of the necessary functions into a single controller, or two, would require significant up-front controller hardware development, and would limit the adaptability of the electronic controls to the evolving requirements for GDCI.
Technical Paper

Paradox of Miniaturization Trend Versus Hybrid Electrical Vehicle Requirements

2012-10-02
2012-36-0262
In recent years, a number of key influences are contributing to accelerate technological innovation in the automotive industrial sector. Concerns about renewable energy resource, fossil-fuels crises and higher gasoline prices, global warming awareness and environmental impacts, scarcity of minerals/metals and electronics demands rising are some of the major challenges for vehicle automakers and their suppliers. The interest in alternative fuel vehicles, especially hybrid-electrical vehicles (HEV) or renewable energy power concepts for road vehicles has become intensified and represents a significant area of research and development in order to meet nowadays global demands. However because of Hybrid Vehicles unique Power Supply System the electrical/electronic architecture (E/E) is sophisticated, requesting more robust sealing and a particular wiring harness components, such as connector, terminals and cables.
Technical Paper

Development of an Analytical Tool for Multilayer Stack Assemblies

2011-10-06
2011-28-0083
The development of an analytical model for multilayer stack subjected to temperature change is demonstrated here. Thin continuous layers of materials bonded together deform as a plate due to their differing coefficients of thermal expansion upon subjecting the bonded materials to the change in temperature. Applications of such structures can be found in the electronics industry (the study of warpage issues in printed circuit boards) or in the aerospace industry as (the study of laminated thin sheets used as skin structures for load bearing members such as wings and fuselage). In automotive electronics, critical high-power packages (IGBT, Power FETs) include several layers of widely differing materials (aluminum, solder, copper, ceramics) subjected to wide temperature cyclic ranges. Modeling of such structures by using three-dimensional finite element methods is usually time consuming and may not exactly predict the inter-laminar strains.
Technical Paper

42V Power Supply Systems Impact for Emerging Market Projects

2005-11-22
2005-01-4115
This paper provides a survey about the consequences of a 42V Power Supply System for new vehicle projects, specially, its impact on directed project for Emerging Markets. At a first moment, it will be described new systems and its demand for additional power availability for future projects, such as electrical steering and brake systems; electrical air conditioning compressor; and electrical water and oil pumps. Following this subject, it will be presented possible alternatives for 14/42V Power Supply Systems, and also its impact over Power and Signal Distribution System components, such as connector, terminals, cables, relays, electrical centers, etc. Finally, the previous presented scenarios will be analyzed under a point of view for the Emerging Market demand for such new proposed systems, looking for best alternative driven.
X