Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

1-D Simulation Study of Divided Exhaust Period for a Highly Downsized Turbocharged SI Engine - Scavenge Valve Optimization

2014-04-01
2014-01-1656
Fuel efficiency and torque performance are two major challenges for highly downsized turbocharged engines. However, the inherent characteristics of the turbocharged SI engine such as negative PMEP, knock sensitivity and poor transient performance significantly limit its maximum potential. Conventional ways of improving the problems above normally concentrate solely on the engine side or turbocharger side leaving the exhaust manifold in between ignored. This paper investigates this neglected area by highlighting a novel means of gas exchange process. Divided Exhaust Period (DEP) is an alternative way of accomplishing the gas exchange process in turbocharged engines. The DEP concept engine features two exhaust valves but with separated function. The blow-down valve acts like a traditional turbocharged exhaust valve to evacuate the first portion of the exhaust gas to the turbine.
Journal Article

Ultra Boost for Economy: Extending the Limits of Extreme Engine Downsizing

2014-04-01
2014-01-1185
The paper discusses the concept, design and final results from the ‘Ultra Boost for Economy’ collaborative project, which was part-funded by the Technology Strategy Board, the UK's innovation agency. The project comprised industry- and academia-wide expertise to demonstrate that it is possible to reduce engine capacity by 60% and still achieve the torque curve of a modern, large-capacity naturally-aspirated engine, while encompassing the attributes necessary to employ such a concept in premium vehicles. In addition to achieving the torque curve of the Jaguar Land Rover naturally-aspirated 5.0 litre V8 engine (which included generating 25 bar BMEP at 1000 rpm), the main project target was to show that such a downsized engine could, in itself, provide a major proportion of a route towards a 35% reduction in vehicle tailpipe CO2 on the New European Drive Cycle, together with some vehicle-based modifications and the assumption of stop-start technology being used instead of hybridization.
Journal Article

Observations on the Measurement and Performance Impact of Catalyzed vs. Non Catalyzed EGR on a Heavily Downsized DISI Engine

2014-04-01
2014-01-1196
Increasingly stringent regulations and rising fuel costs require that automotive manufacturers reduce their fleet CO2 emissions. Gasoline engine downsizing is one such technology at the forefront of improvements in fuel economy. As engine downsizing becomes more aggressive, normal engine operating points are moving into higher load regions, typically requiring over-fuelling to maintain exhaust gas temperatures within component protection limits and retarded ignition timings in order to mitigate knock and pre-ignition events. These two mechanisms are counterproductive, since the retarded ignition timing delays combustion, in turn raising exhaust gas temperature. A key process being used to inhibit the occurrence of these knock and pre-ignition phenomena is cooled exhaust gas recirculation (EGR). Cooled EGR lowers temperatures during the combustion process, reducing the possibility of knock, and can thus reduce or eliminate the need for over-fuelling.
Technical Paper

Investigations into Steady-State and Stop-Start Emissions in a Wankel Rotary Engine with a Novel Rotor Cooling Arrangement

2021-09-05
2021-24-0097
The present work investigates a means of controlling engine hydrocarbon startup and shutdown emissions in a Wankel engine which uses a novel rotor cooling method. Mechanically the engine employs a self-pressurizing air-cooled rotor system (SPARCS) configured to provide improved cooling versus a simple air-cooled rotor arrangement. The novelty of the SPARCS system is that it uses the fact that blowby past the sealing grid is inevitable in a Wankel engine as a means of increasing the density of the medium used for cooling the rotor. Unfortunately, the design also means that when the engine is shutdown, due to the overpressure within the engine core and the fact that fuel vapour and lubricating oil are to be found within it, unburned hydrocarbons can leak into the combustion chambers, and thence to the atmosphere via either or both of the intake and exhaust ports.
Technical Paper

A Random Forest Algorithmic Approach to Predicting Particulate Emissions from a Highly Boosted GDI Engine

2021-09-05
2021-24-0076
Particulate emissions from gasoline direct injection (GDI) engines continue to be a topic of substantial research interest. Forthcoming regulation both in the USA and the EU will further reduce their emission and drive innovation. Substantial research effort is spent undertaking experiments to understand, characterize, and research particle number (PN) emissions from engines and vehicles. Recent advances in computing power, data storage, and understanding of artificial intelligence algorithms now mean that these are becoming an important tool in engine research. In this work a random forest (RF) algorithm is used for the prediction of PN emissions from a highly boosted (up to 32 bar BMEP) GDI engine. Particle size, concentration, and the accumulation mode geometric standard deviation (GSD) are all predicted by the model. The results are analysed and an in depth study on parameter importance is carried out.
Journal Article

Mechanism of Low Frequency Idling Vibration in Rear-Wheel Drive Hybrid Vehicle Equipped with THS II

2015-06-15
2015-01-2255
Although idling vibration is usually caused by 1st order of engine combustion force, other engine forces also occur at frequencies lower than the 1st order of combustion (called low frequency idling vibration in this paper). The drive-line of the Toyota Hybrid System II (THS II) has different torsional vibration characteristics compared to a conventional gasoline engine vehicle with an automatic transmission. Nonlinear characteristics caused by the state of backlash of pinions and splines influence changes in the torsional resonance frequency. The torsional resonance frequency of the drive-line can be controlled utilizing the hybrid system controls of the THS II.
Journal Article

SuperGen on Ultraboost: Variable-Speed Centrifugal Supercharging as an Enabling Technology for Extreme Engine Downsizing

2015-04-14
2015-01-1282
The paper discusses investigations into improving the full-load and transient performance of the Ultraboost extreme downsizing engine by the application of the SuperGen variable-speed centrifugal supercharger. Since its output stage speed is decoupled from that of the crankshaft, SuperGen is potentially especially attractive in a compound pressure-charging system. Such systems typically comprise a turbocharger, which is used as the main charging device, compounded at lower charge mass flow rates by a supercharger used as a second boosting stage. Because of its variable drive ratio, SuperGen can be blended in and out continuously to provide seamless driveability, as opposed to the alternative of a clutched, single-drive-ratio positive-displacement device. In this respect its operation is very similar to that of an electrically-driven compressor, although it is voltage agnostic and can supply other hybrid functionality, too.
Journal Article

Analysis of a Diesel Passenger Car Behavior On-Road and over Certification Duty Cycles

2016-10-17
2016-01-2328
Precise, repeatable and representative testing is a key tool for developing and demonstrating automotive fuel and lubricant products. This paper reports on the first findings of a project that aims to determine the requirements for highly repeatable test methods to measure very small differences in fuel economy and powertrain performance. This will be underpinned by identifying and quantifying the variations inherent to this specific test vehicle, both on-road and on Chassis Dynamometer (CD), that create a barrier to improved testing methods. In this initial work, a comparison was made between on-road driving, the New European Drive Cycle (NEDC) and World harmonized Light-duty Test Cycle (WLTC) cycles to understand the behavior of various vehicle systems along with the discrepancies that can arise owing to the particular conditions of the standard test cycles.
Technical Paper

Is the “K Value” of an Engine Truly Fuel Independent?

2020-04-14
2020-01-0615
The octane appetite of an engine is frequently characterised by the so-called K value. It is usually assumed that K is dependent only on the thermodynamic conditions in the engine when knock occurs. In this work we test this hypothesis: further analysis was conducted on experimental results from SAE 2019-01-0035 in which a matrix of fuels was tested in a single cylinder engine. The fuels consisted of a relatively small number of components, thereby simplifying the analysis of the chemical kinetic proprieties. Through dividing the original fuel matrix into subsets, it was possible to explore the variation of K value with fuel properties. It was found that K value tends to increase slightly with RON. The explanation for this finding is that higher RON leads to advanced ignition timing (i.e. closer to MBT conditions) and advanced ignition timing results in faster combustion because of the higher pressures and temperatures reached in the thermodynamic trajectory.
Technical Paper

Control-Oriented Modelling of a Wankel Rotary Engine: A Synthesis Approach of State Space and Neural Networks

2020-04-14
2020-01-0253
The use of Wankel rotary engines as a range extender has been recognised as an appealing method to enhance the performance of Hybrid Electric Vehicles (HEV). They are effective alternatives to conventional reciprocating piston engines due to their considerable merits such as lightness, compactness, and higher power-to-weight ratio. However, further improvements on Wankel engines in terms of fuel economy and emissions are still needed. The objective of this work is to investigate the engine modelling methodology that is particularly suitable for the theoretical studies on Wankel engine dynamics and new control development. In this paper, control-oriented models are developed for a 225CS Wankel rotary engine produced by Advanced Innovative Engineering (AIE) UK Ltd. Through a synthesis approach that involves State Space (SS) principles and the artificial Neural Networks (NN), the Wankel engine models are derived by leveraging both first-principle knowledge and engine test data.
Journal Article

Experimental Characterisation of Heat Transfer in Exhaust Pipe Sections

2008-04-14
2008-01-0391
This paper describes the characterisation of heat transfer in a series of 11 test sections designed to represent a range of configurations seen in production exhaust systems, which is part of a larger activity aimed at the accurate modeling of heat transfer and subsequent catalyst light off in production exhaust systems comprised of similar geometries. These sections include variations in wall thickness, diameter, bend angle and radius. For each section a range of transient and steady state tests were performed on a dynamic test cell using a port injected gasoline engine. In each case a correlation between observed Reynolds number (Re) and Nusselt number (Nu) was developed. A model of the system was implemented in Matlab/Simulink in which each pipe element was split into 25 sub-elements by dividing the pipe into five both axially and radially. The modeling approach was validated using the experimental data.
Journal Article

Concept of “Temperature Swing Heat Insulation” in Combustion Chamber Walls, and Appropriate Thermo-Physical Properties for Heat Insulation Coat

2013-04-08
2013-01-0274
The aim of this work is to investigate the possibility of heat insulation by “Temperature Swing”, that is temperature fluctuation, on combustion chamber walls coated with low-heat-conductivity and low-heat-capacity materials. Adiabatic engines studied in the 1980s, such as ceramic coated engines, caused constantly high temperature on combustion wall surface during the whole cycle including the intake stroke, even if it employed ceramic thermal barrier coating methods. This resulted in increase in NOx and Soot, decrease in volumetric efficiency and combustion efficiency, and facilitated the occurrence of engine knock. On the other hand, “Temperature Swing” coat on the combustion chamber walls leads to a large change in surface temperature. In this case, the surface temperature with this insulation coat follows the transient gas temperature, which decreases heat loss with the prevention of intake air heating, and also which is expected to prevent NOx and Soot from increasing.
Journal Article

Development of CFD Shape Optimization Technology using the Adjoint Method and its Application to Engine Intake Port Design

2013-04-08
2013-01-0969
Computational fluid dynamics (CFD) shape optimization technology is playing an increasingly significant role in the development of products that satisfy various demands, including trade-off relationships. It offers the possibility of designing or improving product shape with respect to a given cost function, subject to geometrical constraints. However, conventional CFD shape optimization technology that uses parametric shape modification has two following issues: (1) expensive computational cost to obtain the final shape, (2) performance variations of the obtained shape depends on the skill or experience of the designer who determined the locations to be modified. In this study, to resolve those problems, an efficient shape optimization technology was developed that uses the adjoint method to perform sensitivity analysis of a cost function on the design parameters. It is composed of a combination of topology optimization and surface geometry optimization.
Journal Article

0W-16 Fuel Economy Gasoline Engine Oil Compatible with Low Speed Pre-Ignition Performance

2017-10-08
2017-01-2346
It has been long established fact that fuel economy is a key driving force of low viscosity gasoline engine oil research and development considered by the original equipment manufacturers (OEMs) and lubricant companies. The development of low viscosity gasoline engine oils should not only focus on fuel economy improvement, but also on the low speed pre-ignition (LSPI) prevention property. In previous LSPI prevention literatures, the necessity of applying Ca/Mg-based detergents system in the engine oil formulations was proposed. In this paper, we adopted a specific Group III base oil containing Ca-salicylate detergent, borated dispersant, Mo-DTC in the formulation and investigated the various effects of Mg-salicylate and Mg-sulfonate on the performance of engine oil. It was found that Mg-sulfonate showed a significant detrimental impact on silicone rubber compatibility while the influence from Mg-salicylate remains acceptable.
Journal Article

Piston Cleanliness via Fuel Additive Technology

2013-09-08
2013-24-0101
This work compared the piston deposit ratings in an engine when it was run on gasoline with a high concentration of deposit control additive (DCA) versus gasoline with a low concentration of additive. The additives came from different sources and contained detergents with different functional groups. The engine was a Ford V-8 PFI engine, which is used in ASTM D6593, the Sequence VG test. The experimental procedure followed the ASTM protocol, except for the fuel, which was treated with additives. Deposit ratings were better, at 95% confidence, in the tests using a high concentration of additive versus the tests using a low concentration.
Journal Article

The Effect of Engine, Axle and Transmission Lubricant, and Operating Conditions on Heavy Duty Diesel Fuel Economy. Part 1: Measurements

2011-08-30
2011-01-2129
It is expected that the world's energy demand will double by 2050, which requires energy-efficient technologies to be readily available. With the increasing number of vehicles on our roads the demand for energy is increasing rapidly, and with this there is an associated increase in CO₂ emissions. Through the careful use of optimized lubricants it is possible to significantly reduce vehicle fuel consumption and hence CO₂. This paper evaluates the effects on fuel economy of high quality, low viscosity heavy-duty diesel engine type lubricants against mainstream type products for all elements of the vehicle driveline. Testing was performed on Shell's driveline test facility for the evaluation of fuel consumption effects due to engine, gearbox and axle oils and the variation with engine operating conditions.
Journal Article

The Effect of Engine, Axle and Transmission Lubricant, and Operating Conditions on Heavy Duty Diesel Fuel Economy: Part 2: Predictions

2011-08-30
2011-01-2130
A predictive model for estimating the fuel saving of “top tier” engine, axle and transmission lubricants (compared to “mainstream” lubricants), in a heavy duty truck, operating on a realistic driving cycle, is described. Simulations have been performed for different truck weights (10, 20 and 40 tonnes) and it was found that the model predicts percentage fuel economy benefits that are of a similar magnitude to those measured in well controlled field trials1. The model predicts the percentage fuel saving from the engine oil should decrease as the vehicle load increases (which is in agreement with field trial results). The percentage fuel saving from the axle and gearbox oils initially decreases with load and then stays more or less constant. This behaviour is due to the detailed way in which axle and gearbox efficiency varies with speed/load and lubricant type.
Journal Article

Octane Appetite: The Relevance of a Lower Limit to the MON Specification in a Downsized, Highly Boosted DISI Engine

2014-10-13
2014-01-2718
Market demand for high performance gasoline vehicles and increasingly strict government emissions regulations are driving the development of highly downsized, boosted direct injection engines. The in-cylinder temperatures and pressures of these emerging technologies tend to no longer adhere to the test conditions defining the RON and MON octane rating scales. This divergence between fuel knock rating methods and fuel performance in modern engines has previously led to the development of an engine and operating condition dependent scaling factor, K, which allows for extrapolation of RON and MON values. Downsized, boosted DISI engines have been generally shown to have negative K-values when knock limited, indicating a preference for fuels of higher sensitivity and challenging the relevance of a lower limit to the MON specification.
Technical Paper

Automated Calibration of an Analytical Wall-Wetting Model

2007-01-23
2007-01-0018
This paper describes the development and automated calibration of a compact analytically based model of the wall-wetting phenomenon of modern port fuel-injected (PFI) spark-ignition (SI) gasoline engines. The wall-wetting model, based on the physics of forced convection with phase change, is to be used in an automated model-based calibration program. The first stage of work was to develop a model of the wall-wetting phenomenon in Matlab. The model was then calibrated using experimental data collected from a 1.8-litre turbocharged I4 engine coupled to a dynamic 200kW AC dynamometer. The calibration was accomplished by adopting a two stage optimization approach. Firstly, a design of experiments (DoE) approach was used to establish the effect of the principal model parameters on a set of metrics that characterized the magnitude and duration of the measured lambda deviation during a transient.
Technical Paper

Simulation of Suction Flow Ripple in Power Steering Pumps

1998-09-14
982023
Noise emitted from the pump can be a major influence on the overall noise created by a power steering system. Dynamic simulation can aid the designer by showing the effect of the pump geometry and oil properties on noise before the prototype has been built. This paper discusses a simulation of suction port flow ripple in a power steering vane pump, which is validated against experimental data. Results show that the mean pressure in the delivery line affects the amplitude of suction port flow ripple. Internal leakage in the pump was found to have little effect on suction port flow ripple. The level of high-frequency flow ripple from the suction port was found to be comparable with or greater than that from the delivery port. The simulation is used to recommend the addition of relief grooves to reduce the high-frequency flow ripple.
X