Refine Your Search

Topic

Search Results

Technical Paper

Pedestrian Head Impact, Automated Post Simulation Results Aggregation, Visualization and Analysis Using d3VIEW

2020-04-14
2020-01-1330
Euro NCAP Pedestrian head impact protocol mandates the reduction of head injuries, measured using head injury criteria (HIC). Virtual tools driven design comprises of simulating the impact on the hood and post processing the results. Due to the high number of impact points, engineers spend a significant portion of their time in manual data management, processing, visualization and score calculation. Moreover, due to large volume of data transfer from these simulations, engineers face data bandwidth issues particularly when the data is in different geographical locations. This deters the focus of the engineer from engineering and also delays the product development process. This paper describes the development of an automated method using d3VIEW that significantly improves the efficiency and eliminates the data volume difficulties there by reducing the product development time while providing a higher level of simulation results visualization.
Journal Article

A Nonlinear Model Predictive Control Strategy with a Disturbance Observer for Spark Ignition Engines with External EGR

2017-03-28
2017-01-0608
This research proposes a control system for Spark Ignition (SI) engines with external Exhaust Gas Recirculation (EGR) based on model predictive control and a disturbance observer. The proposed Economic Nonlinear Model Predictive Controller (E-NMPC) tries to minimize fuel consumption for a number of engine cycles into the future given an Indicated Mean Effective Pressure (IMEP) tracking reference and abnormal combustion constraints like knock and combustion variability. A nonlinear optimization problem is formulated and solved in real time using Sequential Quadratic Programming (SQP) to obtain the desired control actuator set-points. An Extended Kalman Filter (EKF) based observer is applied to estimate engine states, combining both air path and cylinder dynamics. The EKF engine state(s) observer is augmented with disturbance estimation to account for modeling errors and/or sensor/actuator offset.
Technical Paper

A Novel Kalman Filter Based Road Grade Estimation Method

2020-04-14
2020-01-0563
This paper presents a novel Kalman filter based road grade estimation method using measurements from an accelerometer, a gyroscope and a velocity sensor. The accelerometer measures the longitudinal proper acceleration of the vehicle, and the accelerometer measurement is almost drift free but it is heavily corrupted by the accelerometer noise. The gyroscope measures the pitch rate of the vehicle, and the gyroscope measurement is quite clean but it is substantially disturbed by the gyroscope bias. The velocity sensor measures the longitudinal velocity of the vehicle, and the velocity sensor measurement is also considerably corrupted by the measurement noise. The developed Kalman filter based estimation method uses the models of the sensors and their outputs, and fuses the sensor measurements to optimally estimate the road grade. The simulation results show that the developed method is very effective in producing an accurate road grade estimate.
Technical Paper

Equivalence Factor Calculation for Hybrid Vehicles

2020-04-14
2020-01-1196
Within a hybrid electric vehicle, given a power request initiated by pedal actuation, a portion of overall power may be generated by fuel within an internal combustion engine, and a portion of power may be taken from or stored within a battery via an e-machine. Generally speaking, power taken from a vehicle battery must eventually be recharged at a later time. Recharge energy typically comes ultimately from engine generated power (and hence from fuel), or from recovered braking energy. A hybrid electric vehicle control system attempts to identify when to use each type of power, i.e., battery or engine power, in order to minimize overall fuel consumption. In order to most efficiently utilize battery and fuel generated power, many HEV control strategies utilize a concept wherein battery power is converted to a scaled fueling rate.
Technical Paper

Utilizing Engine Dyno Data to Build NVH Simulation Models for Early Rapid Prototyping

2021-08-31
2021-01-1069
As the move to decrease physical prototyping increases the need to virtually prototype vehicles become more critical. Assessing NVH vehicle targets and making critical component level decisions is becoming a larger part of the NVH engineer’s job. To make decisions earlier in the process when prototypes are not available companies need to leverage more both their historical and simulation results. Today this is possible by utilizing a hybrid modelling approach in an NVH Simulator using measured on road, CAE, and test bench data. By starting with measured on road data from a previous generation or comparable vehicle, engineers can build virtual prototypes by using a hybrid modeling approach incorporating CAE and/or test bench data to create the desired NVH characteristics. This enables the creation of a virtual drivable model to assess subjectively the vehicles acoustic targets virtually before a prototype vehicle is available.
Technical Paper

Aerodynamic Drag of a Vehicle and Trailer Combination in Yaw

2017-03-28
2017-01-1540
Typical production vehicle development includes road testing of a vehicle towing a trailer to evaluate powertrain thermal performance. In order to correlate tests with simulations, the aerodynamic effects of pulling a trailer behind a vehicle must be estimated. During real world operation a vehicle often encounters cross winds. Therefore, the effects of cross winds on the drag of a vehicle–trailer combination should be taken into account. Improving the accuracy of aerodynamic load prediction for a vehicle-trailer combination should in turn lead to improved simulations and better thermal performance. In order to best simulate conditions for real world trailer towing, a study was performed using reduced scale models of a Sport Utility Vehicle (SUV) and a Pickup Truck (PT) towing a medium size cargo trailer. The scale model vehicle and trailer combinations were tested in a full scale wind tunnel.
Technical Paper

Lateral Controllability for Automated Driving (SAE Level 2 and Level 3 Automated Driving Systems)

2021-04-06
2021-01-0864
In this study we collect and analyze data on how hands-free automated lane centering systems affect the controllability of a hazardous event during an operational situation by a human operator. Through these data and their analysis, we seek to answer the following questions: Is Level 2 and Level 3 automated driving inherently uncontrollable as a result of a steering failure? Or, is there some level of operator control of hazardous situations occurring during Level 2 and Level 3 automated driving that can reasonably be expected, given that these systems still rely on a driver as the primary fall back. The controllability focus group experiments were carried out using an instrumented MY15 Jeep® Cherokee with a prototype Level 2 automated driving system that was modified to simulate a hands-free steering system on a closed track with speeds up to 110kph. The vehicle was also fitted with supplemental safety measures to ensure experimenter control.
Technical Paper

A Simulation-Based Approach to Incorporate Uncertainty in Reliability Growth Planning (RGP)

2020-04-14
2020-01-0742
The development of complex engineering systems often encounters various challenges in terms of meeting New Product Development (NPD) assigned budget, launch time, and system performance goals. Most of the NPD processes have been experiencing challenges to meet these goals within an increasingly competitive global market environment. These challenges become more complicated to manage when the development process is long with different sources of uncertainty. Despite decades of industrial experience and academic research efforts in managing NPD processes, it is observed that designing and developing increasingly complex systems, e.g., automotive, is still subjected to significant cost overrun, schedule delays, and functional issues during early design stages. To provide a Reliability Growth Planning (RGP) model, several inputs are required, e.g., the initial reliability estimation, the reliability goal, test recourses, and the duration of the design or test period.
Technical Paper

Microprocessor Execution Time and Memory Use for Battery State of Charge Estimation Algorithms

2022-03-29
2022-01-0697
Accurate battery state of charge (SOC) estimation is essential for safe and reliable performance of electric vehicles (EVs). Lithium-ion batteries, commonly used for EV applications, have strong time-varying and non-linear behaviour, making SOC estimation challenging. In this paper, a processor in the loop (PIL) platform is used to assess the execution time and memory use of different SOC estimation algorithms. Four different SOC estimation algorithms are presented and benchmarked, including an extended Kalman filter (EKF), EKF with recursive least squares filter (EKF-RLS) feedforward neural network (FNN), and a recurrent neural network with long short-term memory (LSTM). The algorithms are deployed to two different NXP S32Kx microprocessors and executed in real-time to assess the algorithms' computational load. The algorithms are benchmarked in terms of accuracy, execution time, flash memory, and random access memory (RAM) use.
Technical Paper

Virtual Accelerometer Approach to Create Vibration Profile for Automotive Component Shake Test

2023-04-11
2023-01-0722
Vibration shaker testing is a great tool of validating the vibration fatigue performance of automotive components & systems. However, the representative vibration schedule requires a pre-knowledge of the acceleration history for the test object, which usually is not available until the later development phase of a vehicle program when physical properties are available. Sometimes, a generic vibration schedule developed from the worst-case loading profiles are used with risk of lacking correlation with later full vehicle durability test such as Road Test Simulator (RTS) or Proving Ground (PG) road test due to the higher loading amplitude. This paper proposes a virtual accelerometer approach to collect acceleration responses of a component from a virtual vehicle model. First, a multiple body dynamic model will be produced for virtual load calculation over a series of digitalized virtual proving ground road profiles.
Technical Paper

Development of a Nonlinear, Hysteretic and Frequency Dependent Bushing Model

2015-04-14
2015-01-0428
An accurate bushing model is vital for vehicle dynamic simulation regarding fatigue life prediction. This paper introduces the Advanced Bushing Model (ABM) that was developed in MATLAB® environment, which gives high precision and fast simulation. The ABM is a time-domain model targeting for vehicle durability simulation. It dynamically captures bushing nonlinearities that occur on stiffness, damping and hysteresis, through a time-history-based fitting technique, compensated with frequency dependency functionality. Among the simulated and test-collected bushing loads, good correlations have been achieved for elastomer bushings and hydraulic engine mounts and validated with a random excitation signal. This ABM model has been integrated into a virtual shaker table (from a parallel project) as the engine mount model to simulate the mount load, and has shown acceptable prediction on fatigue damage.
Technical Paper

A Technique for Cargo Box Tailgate CAE Fatigue Life Predictions Loaded with Inertial Forces and Moments

2015-04-14
2015-01-0532
This paper describes a CAE fatigue life prediction technique for a tailgate on pickup truck cargo box with inertial forces and moments applied at mass center of the tailgate as input loads. The inertial forces and moments are calculated from the accelerations measured at the corners of the tailgate as the truck is being driven over a durability schedule at the test proving grounds. All the dynamic responses of the tailgate on cargo box, including any dynamic interactions at the pivot joints between the tailgate and box sides, are captured in the acquired data and also in the inertial forces and moments computed at the mass center. Correspondingly, all the dynamic responses are included in the CAE fatigue life predictions. The dynamic interactions at the pivot joints are simulated by using two identical CAE models, one with lateral translational constraint applied at the left pivot only and the other at the right pivot only.
Technical Paper

Optimization of MAC Side Window Demister Outlet by Parametric Modelling through DFSS Approach

2015-04-14
2015-01-0363
In recent years clearing the mist on side windows is one of the main criterions for all OEMs for providing comfort level to the person while driving. Visibility through the side windows will be poor when the mist is not cleared to the desired level. “Windows fog up excessively/don't clear quickly” is one of the JD Power question to assess the customer satisfaction related to HVAC performance. In a Mobile Air Conditioning System, HVAC demister duct and outlet plays an important role for removing the mist formation on vehicle side window. Normally demister duct and outlet design is evaluated by the target airflow and velocity achieved at driver and passenger side window. The methodology for optimizing the demister outlet located at side door trim has been discussed. Detailed studies are carried out for creating a parametric modeling and optimization of demister outlet design for meeting the target velocity.
Technical Paper

Novel Methodology to Compute Halfshaft Joint Forces and Virtually Simulate Powertrain Wiggle

2021-04-06
2021-01-0665
Vibrations affect vehicle occupants and should be prevented early in design process. Powertrain (PT) wiggle is one of the well-known issues. It is the 3rd order lateral vibration, forced by half shaft inner LH/RH plunging tripod joints [1,2]. Lateral PT resonance (7-15Hz) occurs at certain vehicle speed during acceleration and may excite lateral, pitch and roll PT modes. Typically, PT wiggle occurs in speed range of 5-25kph. Vibration is noticeable on driver and passenger seats mostly in lateral direction. The inner half shaft joints are the major source of vibration. Unfortunately, existing MBD tools like Adams [3] are missing detailed tripod joint representation because of complex mechanical interactions inside the joint. At least three sliding contacts between tripod rollers and joint housing, lubricant inside the can and combination of rotation and plunging make the modeling too complicated.
Technical Paper

A Fresh Perspective on Hypoid Duty Cycle Severity

2021-04-06
2021-01-0707
A new method is demonstrated for rating the “severity” of a hypoid gear set duty cycle (revolutions at torque) using the intercept of T-N curve to support gearset selection and sizing decision across vehicle programs. Historically, it has been customary to compute a cumulative damage (using Miner's Rule) for a rotating component duty cycle given a T-N curve slope and intercept for the component and failure mode of interest. The slope and intercept of a T-N curve is often proprietary to the axle manufacturer and are not published. Therefore, for upfront sizing and selection purposes representative T-N properties are used to assess relative component duty cycle severity via cumulative damage (non-dimensional quantity). A similar duty cycle severity rating can also be achieved by computing the intercept of the T-N curve instead of cumulative damage, which is the focus of this study.
Journal Article

A Decision Based Mobility Model for Semi and Fully Autonomous Vehicles

2020-04-14
2020-01-0747
With the emergence of intelligent ground vehicles, an objective evaluation of vehicle mobility has become an even more challenging task. Vehicle mobility refers to the ability of a ground vehicle to traverse from one point to another, preferably in an optimal way. Numerous techniques exist for evaluating the mobility of vehicles on paved roads, both quantitatively and qualitatively, however, capabilities to evaluate their off-road performance remains limited. Whereas a vehicle’s off-road mobility may be significantly enhanced with intelligence, it also introduces many new variables into the decision making process that must be considered. In this paper, we present a decision analytic framework to accomplish this task. In our approach, a vehicle’s mobility is modeled using an operator’s preferences over multiple mobility attributes of concern. We also provide a method to analyze various operating scenarios including the ability to mitigate uncertainty in the vehicles inputs.
Journal Article

Battery Entropic Heating Coefficient Testing and Use in Cell-Level Loss Modeling for Extreme Fast Charging

2020-04-14
2020-01-0862
To achieve an accurate estimate of losses in a battery it is necessary to consider the reversible entropic losses, which may constitute over 20% of the peak total loss. In this work, a procedure for experimentally determining the entropic heating coefficient of a lithium-ion battery cell is developed. The entropic heating coefficient is the rate of change of the cell’s open-circuit voltage (OCV) with respect to temperature; it is a function of state-of-charge (SOC) and temperature and is often expressed in mV/K. The reversible losses inside the cell are a function of the current, the temperature, and the entropic heating coefficient, which itself is dependent on the cell chemistry. The total cell losses are the sum of the reversible and irreversible losses, where the irreversible losses consist of ohmic losses in the electrodes, ion transport losses, and other irreversible chemical reactions.
Journal Article

Application of Artificial Intelligence to Solve an Elasto-Plastic Impact Problem

2021-04-06
2021-01-0249
Artificial intelligence (AI) is dramatically changing multiple industries. AI’s potential to transform Computer-Aided Engineering (CAE) cannot be overlooked. Conventionally, Finite Element Analysis (FEA) is the simulation of any given physical phenomenon to obtain an approximate solution to a group of problems governed by Partial Differential Equations (PDE). Implementation of AI methods in this area combines human intelligence with numerical solutions to make them more efficient. This paper attempts to develop a Deep Neural Network (DNN) model to solve an elasto-plastic impact problem of a symmetric short crush tube made of three materials impacted by a moving wall. A structured learning database was established to train and validate the model using finite element simulations. Tube size, gauge and elasto-plastic material properties were used as input attributes or features. The maximum axial displacement of the tube is the target label to predict.
Technical Paper

Comparative Study between Equivalent Circuit and Recurrent Neural Network Battery Voltage Models

2021-04-06
2021-01-0759
Lithium-ion battery (LIB) terminal voltage models are investigated using two modelling approaches. The first model is a third-order Thevenin equivalent circuit model (ECM), which consists of an open-circuit voltage in series with a nonlinear resistance and three parallel RC pairs. The parameters of the ECM are obtained by fitting the model to hybrid pulse power characterization (HPPC) test data. The parametrization of the ECM is performed through quadratic-based programming. The second is a novel modelling approach based on long short-term memory (LSTM) recurrent neural networks to estimate the battery terminal voltage. The LSTM is trained on multiple vehicle drive cycles at six different temperatures, including −20°C, without the necessity of battery characterization tests. The performance of both models is evaluated with four automotive drive cycles at each temperature. The results show that both models achieve acceptable performance at all temperatures.
X