Refine Your Search

Topic

Author

Search Results

Journal Article

Crankcase and Crankshaft Coupled Structural Analysis Based on Hybrid Dynamic Simulation

2013-12-20
2013-01-9047
This paper presents the comparison of two different approaches for crankcase structural analysis. The first approach is a conventional quasi-static simulation, which will not be detailed in this work and the second approach involves determining the dynamic loading generated by the crankshaft torsional, flexural and axial vibrations on the crankcase. The accuracy of this approach consists in the development of a robust mathematical model that can couple the dynamic characteristics of the crankshaft and the crankcase, representing realistically the interaction between both components. The methodology to evaluate these dynamic responses is referred to as hybrid simulation, which consists of the solution of the dynamics of an E-MBS (Elastic Multi Body System) coupled with consecutive FEA (Finite Element Analysis).
Journal Article

Development and Demonstration of LNT+SCR System for Passenger Car Diesel Applications

2014-04-01
2014-01-1537
The regulations for mobile applications will become stricter in Euro 6 and further emission levels and require the use of active aftertreatment methods for NOX and particulate matter. SCR and LNT have been both used commercially for mobile NOX removal. An alternative system is based on the combination of these two technologies. Developments of catalysts and whole systems as well as final vehicle demonstrations are discussed in this study. The small and full-size catalyst development experiments resulted in PtRh/LNT with optimized noble metal loadings and Cu-SCR catalyst having a high durability and ammonia adsorption capacity. For this study, an aftertreatment system consisting of LNT plus exhaust bypass, passive SCR and engine independent reductant supply by on-board exhaust fuel reforming was developed and investigated. The concept definition considers NOX conversion, CO2 drawback and system complexity.
Journal Article

Advanced Numerical and Experimental Techniques for the Extension of a Turbine Mapping

2013-09-08
2013-24-0119
1D codes are nowadays commonly used to investigate a turbocharged ICE performance, turbo-matching and transient response. The turbocharger is usually described in terms of experimentally derived characteristic maps. The latter are commonly measured using the compressor as a brake for the turbine, under steady “hot gas” tests. This approach causes some drawbacks: each iso-speed is commonly limited to a narrow pressure ratio and mass flow rate range, while a wider operating domain is experienced on the engine; the turbine thermal conditions realized on the test rig may strongly differ from the coupled-to-engine operation; a “conventional” net turbine efficiency is really measured, since it includes the effects of the heat exchange on the compressor side, together with bearing friction and windage losses.
Journal Article

Automated Verification and Validation Methods for Transmission Control Software

2015-04-14
2015-01-0163
With the increasing popularity of seamless gear changing and smooth driving experience along with the need for high fuel efficiency, transmission system development has rapidly increased in complexity. So too has transmission control software while quality requirements are high and time-to-market is short. As a result, extensive testing and documentation along with quick and efficient development methods are required. FEV responds to these challenges by developing and integrating a transmission software product line with an automated verification and validation process according to the concept of Continuous Integration (CI). Hence, the following paper outlines a software architecture called “PERSIST” where complexity is reduced by a modular architecture approach. Additionally, modularity enables testability and tracking of quality defects to their root cause.
Journal Article

Fuel Economy Benefits for Commercial Diesel Engines with Waste Heat Recovery

2015-09-29
2015-01-2807
In the near future engine emitted carbon dioxides (CO2) are going to be limited for all vehicle categories with respect to the Green House Gases (GHG) norms. To tackle this challenge, new concepts need to be developed. For this reason waste heat recovery (WHR) is a promising research field. For commercial vehicles the first phase of CO2 emission legislation will be introduced in the USA in 2014 and will be further tightened towards 2030. Besides the US, CO2 emission legislation for commercial engines will also be introduced in Europe in the near future. The demanded CO2 reduction calls for a better fuel economy which is also of interest for the end user, specifically for the owners of heavy duty diesel vehicles with high mileages. To meet these future legislation objectives, a waste heat recovery system is a beneficial solution of recovering wasted energies from different heat sources in the engine.
Journal Article

Metric-based Evaluation of Software Architecture for an Engine Management System

2016-04-05
2016-01-0037
Powertrain software development for series production faces multifaceted challenges related to high functional complexity, high quality standards, reduced time to market and high development costs. Software architecture tackles the above mentioned challenges by breaking down the complexity of application software into modular components. Hence, design errors introduced during that phase cause significant cost and time deviations. Early and repeated analysis of new and modified architecture artifacts is required to detect design errors and the impact of the subsequent changes in the software architecture. Engine management software has a high degree of functional complexity and large number of system variants depending upon market requirements. This paper deals with the methods to perform automated evaluation of Renault’s EMS 2012 Engine Management Software in a Continuous Integration Framework.
Journal Article

Optimization of Exhaust After-Treatment System (EATS) to BS 6 Emission Level for a Light Commercial Vehicle (LCV) Using Existing BS 4 Engine Results and 1-D Simulation Approach

2017-01-10
2017-26-0119
The emission legislations are becoming increasingly strict all over the world and India too has taken a big leap in this direction by signaling the migration from Bharat Stage 4 (BS 4) to BS 6 in the year 2020. This decision by the Indian government has provided the Indian automotive industry a new challenge to find the most optimal solution for this migration, with the existing BS 4 engines available in their portfolio. Indian market for the LCV segment is highly competitive and cost sensitive where the overall vehicle operation cost (vehicle cost + fluid consumption cost) is the most critical factor. The engine and after-treatment technology for BS 6 emission levels should consider the factors of minimizing the additional hardware cost as well as improving the fuel efficiency. Often both of which are inversely proportional. The presented study involves the optimization of after treatment component size, layout and various systems for NOx and PM reduction.
Journal Article

An Experimental Investigation of Dual-Fuel Combustion in a Light Duty Diesel Engine by In-Cylinder Blending of Ethanol and Diesel

2015-09-01
2015-01-1801
This study investigated dual-fuel operation with a light duty Diesel engine over a wide engine load range. Ethanol was hereby injected into the intake duct, while Diesel was injected directly into the cylinder. At low loads, high ethanol shares are critical in terms of combustion stability and emissions of unburnt hydrocarbons. As the load increases, the rates of heat release become problematic with regard to noise and mechanical stress. At higher loads, an advanced injection of Diesel was found to be beneficial in terms of combustion noise and emissions. For all tests, engine-out NOx emissions were kept within the EU-6.1 limit.
Journal Article

Potentials of Crankshaft Fillet Rolling Process

2012-04-16
2012-01-0755
Crankshaft is a dynamic component that copes with elevated alternating stresses. In order to ensure the service reliability, fillet rolling process is being applied. The state of the art empirical assumptions to consider the effect of fillet rolling process on crankshaft fatigue are conservative. This leads to an over-engineering of the crankshaft. However, calculation of the compressive residual stresses due to surface treatment is a demanding task. The quality of the durability analysis can only be increased by an accurate consideration of the fillet rolling effect. Therefore, Hegenscheidt-MFD, FEV Motorentechnik and Institute for Combustion Engines (VKA) cooperated to enlighten the phenomenon of the fillet rolling process. Process calculations are applied and validated by the measurements and tests. The calculated residual stresses are then superposed with the dynamic loads calculated by FEV Virtual Engine.
Technical Paper

Development of Combustion System for a 1-Liter Advanced Turbocharged Gasoline Direct Injection 3-Cylinder Engine

2016-10-17
2016-01-2243
In recent years, more attention has been focused on environment pollution and energy source issues. As a result, increasingly stringent fuel consumption and emission legislations have been implemented all over the world. For automakers, enhancing engine’s efficiency as a must contributes to lower vehicle fuel consumption. To reach this goal, Geely auto started the development of a 3-cylinder 1.0L turbocharged direct injection (TGDI) gasoline engine to achieve a challenging fuel economy target while maintaining fun-to-drive and NVH performance. Demanding development targets for performance (specific torque 205Nm/L and specific power 100kW/L) and excellent part-load BSFC were defined, which lead to a major challenge for the design of the combustion system. Considering air/fuel mixture, fuel wall impingement and even future potential for lean burn combustion, a symmetrical layout and a central position for the injector with 200bar injection pressure was determined.
Technical Paper

Parametric Analysis of Piston Bowl Geometry and Injection Nozzle Configuration using 3D CFD and DoE

2012-04-16
2012-01-0700
In meeting the stringent emission norms with internal engine measures, the design of the piston bowl and the nozzle configuration perform a defining role. Through 3D CFD simulations, this article shall parametrically investigate the influence of piston bowl geometry and nozzle characteristics on the performance of the combustion system. After validation of the 3D simulation model with experimental results, a Design of Experiment (DoE) method shall be applied to analyze a matrix of piston bowls with parametric variations in geometry. Further, the influence of the nozzle cone angle, hydraulic flow rate, number of holes and their combination shall be determined using systematic parameter variations with selected piston bowl designs. The performance of the various hardware configurations would be evaluated based on the exhaust emissions and fuel consumption values.
Technical Paper

Improvement of Comfort Aspects for High Efficiency Diesel Engines

2013-01-09
2013-26-0119
Besides an excellent driving performance and power output the reduction of CO2 emission is one of the main driver for the increasing distribution of modern diesel engines. Downsizing/downspeeding, friction reduction, new combustion processes and light weight engine architecture describe additional improvement potentials. Nevertheless, these development trends have a significant influence on the noise and vibration behavior of diesel engines. Therefore measures are also necessary to compensate these acoustic disadvantages. Within this publication the most important and efficient countermeasures are described and assessed. Combustion is still one of the dominant noise sources of a modern diesel engine. Diesel knocking is annoying and the combustion noise level is typically higher than for gasoline engines.
Technical Paper

Lamborghini Approach to Engine Downsizing Engine Friction Modeling

2013-09-08
2013-24-0088
Downsizing, down speeding and hybridization are becoming a standard in the automotive industry. This paper was initiated to answer Automobili Lamborghini R&D's question: what does downsizing mean In technical literature downsizing is often referred to as reducing displacement and, sometimes, cylinders. Through a methodological approach, analysis and experimental activities Automobili Lamborghini, with FEV's support, shows that downsizing in terms of engine friction reduction means only reduction of displacement. Using the Aventador V12 6.5 liter engine as a baseline, two 4.3 liter engines were designed, a V8 and a V12. The engine friction losses of these two engines were calculated all over the engine speed range and during the NEDC cycle utilizing a simulation tool and verified through FEV's “Strip-Method” database. This approach gives us the holistic understanding on engine components design and which technologies should be introduced for the next Lamborghini engine generation.
Technical Paper

Potentials of Variable Compressor Pre Swirl Devices in Consideration of Different Sealing Concepts

2013-04-08
2013-01-0934
For turbocharged engines high specific power and torque output as well as a fast transient response are mandatory. This conflict of aims can be solved by different charging systems, for example 2-stage charging or variable turbine geometry. At the Institute for Combustion Engines (VKA) at RWTH Aachen University another alternative, the variable compressor pre swirl, was investigated for solving this conflict of aims. Based on theoretical fundamentals the potentials of a variable compressor pre swirl for transient response, low end torque, specific power output and fuel consumption were presented. These theoretical potentials were explored on turbocharger -, engine - and vehicle test bench. An extended compressor map with partial higher compressor efficiency of up to 2% was detected. The outcome of this is an increase of up to 6% in low end torque, found on engine test bench. This effect could also be validated in 1D simulation.
Technical Paper

NVH Target Cascading from Customer Interface to Vehicle Subsystems

2013-05-13
2013-01-1980
The definition of vehicle and powertrain level targets is one of the first tasks toward establishing where a vehicle will reside with respect to the current or future state of industry. Though development of sound quality metrics is ongoing to better correlate objective data with subjective assessments, target setting at the vehicle level is relatively straightforward. However, realization of these targets depends on effective cascading to system and component levels. Often, component level targets are derived based on experience from earlier development programs, or based on selected characteristics observed during component level benchmarking. An approach is presented here to complement current strategies for component level target definition. This approach involves a systematic concept for definition of component NVH targets based on desired vehicle level performance and a consequent target break down.
Technical Paper

λDSF: Dynamic Skip Fire with Homogeneous Lean Burn for Improved Fuel Consumption, Emissions and Drivability

2018-04-03
2018-01-0891
Dynamic skip fire (DSF) has shown significant fuel economy improvement potential via reduction of pumping losses that generally affect throttled spark-ignition (SI) engines. In DSF operation, individual cylinders are fired on-demand near peak efficiency to satisfy driver torque demand. For vehicles with a downsized-boosted 4-cylinder engine, DSF can reduce fuel consumption by 8% in the WLTC (Class 3) drive cycle. The relatively low cost of cylinder deactivation hardware further improves the production value of DSF. Lean burn strategies in gasoline engines have also demonstrated significant fuel efficiency gains resulting from reduced pumping losses and improved thermodynamic characteristics, such as higher specific heat ratio and lower heat losses. Fuel-air mixture stratification is generally required to achieve stable combustion at low loads.
Technical Paper

Increasing Efficiency in Gasoline Powertrains with a Two-Stage Variable Compression Ratio (VCR) System

2013-04-08
2013-01-0288
Downsizing in combination with turbocharging currently represents the main technology trend for meeting CO2 emissions with gasoline engines. Besides the well-known advantages of downsizing the compression ratio has to be reduced in order to mitigate knock at higher engine loads along with increased turbocharging demand to compensate for the reduction in power. Another disadvantage occurs at part load with increasing boost pressure levels causing the part load efficiencies to deteriorate. The application of a variable compression ratio (VCR) system can help to mitigate these disadvantages. The 2-stage VCR system with variable kinetic lengths entails variable powertrain components which can be used instead of the conventional components and thus only require minor modifications for existing engine architectures. The presented variable length connecting rod system has been continuously developed over the past years.
Technical Paper

Developing Drivetrain Robustness for Small Engine Testing

2013-04-08
2013-01-0400
The increased demand in fuel economy and the reduction of CO₂ emissions results in continued efforts to downsize engines. The downsizing efforts result in engines with lower displacement as well as lower number of cylinders. In addition to cylinder and displacement downsizing the development community embarks on continued efforts toward down-speeding. The combination of the aforementioned factors results in engines which can have high levels of torsional vibrations. Such behavior can have detrimental effects on the drivetrain particularly during the development phase of these. Driveshafts, couplings, and dynamometers are exposed to these torsional forces and depending on their frequency costly damages in these components can occur. To account for these effects, FEV employs a multi-body-system modeling approach through which base engine information is used to determine optimized drivetrain setups. All mechanical elements in the setup are analyzed based on their torsional behavior.
Technical Paper

Comparative Study to Assess the Potential of Different Exhaust Gas Aftertreatment Concepts for Diesel Powered Ultra-Light Commercial Vehicle Applications in View of Meeting BS VI Legislation

2017-01-10
2017-26-0128
Despite the trend in increased prosperity, the Indian automotive market, which is traditionally dominated by highly cost-oriented producion, is very sensitive to the price of fuels and vehicles. Due to these very specific market demands, the U-LCV (ultra-light commercial vehicle) segment with single cylinder natural aspirated Diesel engines (typical sub 650 cc displacement) is gaining immense popularity in the recent years. By moving to 2016, with the announcement of leapfrogging directly to Bharat Stage VI (BS VI) emission legislation in India, and in addition to the mandatory application of Diesel particle filters (DPF), there will be a need to implement effective NOx aftertreament systems. Due to the very low power-to-weight ratio of these particular applications, the engine operation takes place under full load conditions in a significant portion of the test cycle.
Technical Paper

Development of a New 1.8L Down-Speeding Turbocharged Gasoline Engine with Miller Cycle

2018-09-10
2018-01-1712
Upcoming China 4th stage of fuel consumption regulation and China 6a emission legislation require improvement of many existing engines. This paper summarizes an upgrade of combustion system and mechanical layout for a four-cylinder engine family. Based on an existing production process for a naturally aspirated 2.0-liter gasoline engine, a 1.8-liter down-speeded and turbocharged gasoline engine is derived. Starting development by analysis of engine base geometry, a layout for a Miller-Cycle gas exchange with early closing of intake valves is chosen. Requirements on turbocharger configuration are investigated with one-dimensional gas exchange simulation and combustion process will be analyzed by means of 3D-CFD simulation. Challenging boundary conditions of a very moderate long-stroke layout with a stroke/bore-ratio of only 1.037 in combination with a cost efficient port fuel injection system and fixed valve lift profiles are considered.
X