Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Crankcase and Crankshaft Coupled Structural Analysis Based on Hybrid Dynamic Simulation

2013-12-20
2013-01-9047
This paper presents the comparison of two different approaches for crankcase structural analysis. The first approach is a conventional quasi-static simulation, which will not be detailed in this work and the second approach involves determining the dynamic loading generated by the crankshaft torsional, flexural and axial vibrations on the crankcase. The accuracy of this approach consists in the development of a robust mathematical model that can couple the dynamic characteristics of the crankshaft and the crankcase, representing realistically the interaction between both components. The methodology to evaluate these dynamic responses is referred to as hybrid simulation, which consists of the solution of the dynamics of an E-MBS (Elastic Multi Body System) coupled with consecutive FEA (Finite Element Analysis).
Journal Article

Development and Demonstration of LNT+SCR System for Passenger Car Diesel Applications

2014-04-01
2014-01-1537
The regulations for mobile applications will become stricter in Euro 6 and further emission levels and require the use of active aftertreatment methods for NOX and particulate matter. SCR and LNT have been both used commercially for mobile NOX removal. An alternative system is based on the combination of these two technologies. Developments of catalysts and whole systems as well as final vehicle demonstrations are discussed in this study. The small and full-size catalyst development experiments resulted in PtRh/LNT with optimized noble metal loadings and Cu-SCR catalyst having a high durability and ammonia adsorption capacity. For this study, an aftertreatment system consisting of LNT plus exhaust bypass, passive SCR and engine independent reductant supply by on-board exhaust fuel reforming was developed and investigated. The concept definition considers NOX conversion, CO2 drawback and system complexity.
Journal Article

Contribution of High Accuracy Temperature Sensors Towards Fuel Economy and Robust Calibration

2014-04-01
2014-01-1548
Tighter emission limits are discussed and established around the world to improve quality of the air we breathe. In order to control global warming, authorities ask for lower CO2 emissions from combustion engines. Lots of efforts are done to reduce engine out emissions and/or reduce remaining by suitable after treatment systems. Watlow, among others, a manufacturer of high accurate, active temperature sensor ExactSense™, wanted to understand if temperature sensor accuracy can have an influence on fuel consumption (FC). For this purpose a numerical approach was chosen where several non-road driving cycles (NRTCs) were simulated with the data base of a typical Stage IV heavy duty diesel engine. The engine is equipped with an exhaust gas after treatment system consisting of a DOC, CDPF and an SCR. In this work scope, the investigations shall be restricted to the FC benefits obtained in the active and passive DPF regeneration.
Journal Article

The Contribution of Engine Mechanics to Improved Fuel Economy

2014-04-01
2014-01-1663
Measures for reducing engine friction within the powertrain are assessed in this paper. The included measures work in combination with several new technologies such as new combustion technologies, downsizing and alternative fuels. The friction reduction measures are discussed for a typical gasoline vehicle. If powertrain friction could be eliminated completely, a reduction of 15% in CO2 emissions could be achieved. In order to comply with more demanding CO2 legislations, new technologies have to be considered to meet these targets. The additional cost for friction reduction measures are often lower than those of other new technologies. Therefore, these measures are worth following up in detail.
Journal Article

Development Trends for Commercial and Industrial Engines

2014-09-30
2014-01-2325
Exhaust emission reduction and improvements in energy consumption will continuously determine future developments of on-road and off-road engines. Fuel flexibility by substituting Diesel with Natural Gas is becoming increasingly important. To meet these future requirements engines will get more complex. Additional and more advanced accessory systems for waste heat recovery (WHR), gaseous fuel supply, exhaust after-treatment and controls will be added to the base engine. This additional complexity will increase package size, weight and cost of the complete powertrain. Another critical element in future engine development is the optimization of the base engine. Fundamental questions are how much the base engine can contribute to meet the future exhaust emission standards, including CO2 and how much of the incremental size, weight and cost of the additional accessories can be compensated by optimizing the base engine.
Journal Article

Effects of Mixture Stratification on Ignition and Combustion in a GCAI Engine

2014-04-01
2014-01-1270
Fuel consumption and NOx emissions of gasoline engines at part load can be significantly reduced by Controlled Auto-Ignition combustion concepts. However, the range of Gasoline Controlled Auto-Ignition (GCAI) operation is still limited by lacking combustion stability at low load and by high pressure-rise rates toward higher loads. Previous investigations indicate that the auto-ignition process is particularly determined by the thermodynamic state of the charge and by stratification effects of residual gas, temperature, and air-fuel ratio. However, little experimental data exist on the direct influence of mixture stratification on local ignition and heat-release rate (HRR) in direct-injection (DI) GCAI engines, because it is challenging to measure all the relevant charge and combustion parameters quasi-simultaneously with sufficient spatial/temporal resolution and precision.
Journal Article

Advanced Numerical and Experimental Techniques for the Extension of a Turbine Mapping

2013-09-08
2013-24-0119
1D codes are nowadays commonly used to investigate a turbocharged ICE performance, turbo-matching and transient response. The turbocharger is usually described in terms of experimentally derived characteristic maps. The latter are commonly measured using the compressor as a brake for the turbine, under steady “hot gas” tests. This approach causes some drawbacks: each iso-speed is commonly limited to a narrow pressure ratio and mass flow rate range, while a wider operating domain is experienced on the engine; the turbine thermal conditions realized on the test rig may strongly differ from the coupled-to-engine operation; a “conventional” net turbine efficiency is really measured, since it includes the effects of the heat exchange on the compressor side, together with bearing friction and windage losses.
Journal Article

A Simple Method to Predict Knock Using Toluene, N-Heptane and Iso-Octane Blends (TPRF) as Gasoline Surrogates

2015-04-14
2015-01-0757
The autoignition resistance of a practical gasoline is best characterized by the Octane Index, OI, defined as RON-KS, where RON and MON are respectively, Research and Motor Octane Numbers, S is the sensitivity (RON-MON) and K is a constant depending on the pressure and temperature history of the fuel/air mixture in an engine. Experiments in knocking SI engines, HCCI engines and in premixed compression ignition (PCI) engines have shown that if two fuels of different composition have the same OI and experience the same pressure/temperature history, they will have the same autoignition phasing. A practical gasoline is a complex mixture of hydrocarbons and a simple surrogate is needed to describe its autoignition chemistry. A mixture of toluene and PRF (iso-octane + n-heptane), TPRF, can have the same RON and S as a target gasoline and so will have the same OI at any given K value and will be a very good surrogate for the gasoline.
Journal Article

Automated Verification and Validation Methods for Transmission Control Software

2015-04-14
2015-01-0163
With the increasing popularity of seamless gear changing and smooth driving experience along with the need for high fuel efficiency, transmission system development has rapidly increased in complexity. So too has transmission control software while quality requirements are high and time-to-market is short. As a result, extensive testing and documentation along with quick and efficient development methods are required. FEV responds to these challenges by developing and integrating a transmission software product line with an automated verification and validation process according to the concept of Continuous Integration (CI). Hence, the following paper outlines a software architecture called “PERSIST” where complexity is reduced by a modular architecture approach. Additionally, modularity enables testability and tracking of quality defects to their root cause.
Technical Paper

Performance Analysis and In-Cylinder Visualization of Conventional Diesel and Isobaric Combustion in an Optical Diesel Engine

2021-09-05
2021-24-0040
Compared to conventional diesel combustion (CDC), isobaric combustion can achieve a similar or higher indicated efficiency, lower heat transfer losses, reduced nitrogen oxides (NOx) emissions; however, with a penalty of soot emissions. While the engine performance and exhaust emissions of isobaric combustion are well known, the overall flame development, in particular, the flow-field details within the flames are unclear. In this study, the performance analysis of CDC and two isobaric combustion cases was conducted, followed by high-speed imaging of Mie-scattering and soot luminosity in an optically accessible, single-cylinder heavy-duty diesel engine. From the soot luminosity imaging, qualitative flow-fields were obtained using flame image velocimetry (FIV). The peak motoring pressure (PMP) and peak cylinder pressure (PCP) of CDC are kept fixed at 50 and 70 bar, respectively.
Technical Paper

Flow-Field Analysis of Isobaric Combustion Using Multiple Injectors in an Optical Accessible Diesel Engine

2021-09-05
2021-24-0042
Isobaric combustion has shown the potential of improving engine efficiency by lowering the heat transfer losses. Previous studies have achieved isobaric combustion through multiple injections from a single central injector, controlling injection timing and duration of the injection. In this study, we employed three injectors, i.e. one centrally mounted (C) on the cylinder head and two side-injectors (S), slant-mounted on cylinder head protruding their nozzle tip near piston-bowl to achieve the isobaric combustion. This study visualized the flame development of isobaric combustion, linking flow-field details to the observed trends in engine efficiency and soot emissions. The experiments were conducted in an optically accessible single-cylinder heavy-duty diesel engine using n-heptane as fuel. Isobaric combustion, with a 50 bar peak pressure, was achieved with three different injection strategies, i.e. (C+S), (S+C), and (S+S).
Technical Paper

Computational Investigation of the Effects of Injection Strategy and Rail Pressure on Isobaric Combustion in an Optical Compression Ignition Engine

2021-09-05
2021-24-0023
The high-pressure isobaric combustion has been proposed as the most suitable combustion mode for the double compre4ssion expansion engine (DCEE) concept. Previous experimental and simulation studies have demonstrated an improved efficiency compared to the conventional diesel combustion (CDC) engine. In the current study, isobaric combustion was achieved using a single injector with multiple injections. Since this concept involves complex phenomena such as spray to spray interactions, the computational models were extensively validated against the optical engine experiment data, to ensure high-fidelity simulations. The considered optical diagnostic techniques are Mie-scattering, fuel tracer planar laser-induced fluorescence (PLIF), and natural flame luminosity imaging. Overall, a good agreement between the numerical and experimental results was obtained.
Technical Paper

Simultaneous Negative PLIF and OH* Chemiluminescence Imaging of the Gas Exchange and Flame Jet from a Narrow Throat Pre-Chamber

2020-09-15
2020-01-2080
Pre-chamber combustion (PCC) is a promising engine combustion concept capable of extending the lean limit at part load. The engine experiments in the literature showed that the PCC could achieve higher engine thermal efficiency and much lower NOx emission than the spark-ignition engine. Improved understanding of the detailed flow and combustion physics of PCC is important for optimizing the PCC combustion. In this study, we investigated the gas exchange and flame jet from a narrow throat pre-chamber (PC) by only fueling the PC with methane in an optical engine. Simultaneous negative acetone planar laser-induced fluorescence (PLIF) imaging and OH* chemiluminescence imaging were applied to visualize the PC jet and flame jet from the PC, respectively. Results indicate a delay of the PC gas exchange relative to the built-up of the pressure difference (△ P) between PC and the main chamber (MC). This should be due to the gas inertia inside the PC and the resistance of the PC nozzle.
Technical Paper

High-Speed Imaging of Main-Chamber Combustion of a Narrow Throat Pre-Chamber under Lean Conditions

2020-09-15
2020-01-2081
Pre-chamber combustion (PCC) allows an extension on the lean limit of an internal combustion engine (ICE). This combustion mode provides lower NOx emissions and shorter combustion durations that lead to a higher indicated efficiency. In the present work, a narrow throat pre-chamber was tested, which has a unique nozzle area distribution in two rows of six nozzle holes each. Tests were carried out in a modified heavy-duty engine for optical visualization. Methane was used as fuel for both the pre-chamber and the main chamber. Seven operating points were tested, including passive pre-chamber mode as a limit condition, to study the effect of pre- and main-chamber fuel addition on the pre-chamber jets and the main chamber combustion via chemiluminescence imaging. A typical cycle of one of the tested conditions is explained through the captured images. Observations of the typical cycle reveal a predominant presence of only six jets (from the lower row), with well-defined jet structures.
Technical Paper

A Demonstration of High Efficiency, High Reactivity Gasoline Compression Ignition Fuel in an On & Off Road Diesel Engine Application

2020-04-14
2020-01-1311
The regulatory requirements to reduce both greenhouse gases and exhaust gas pollutants from heavy duty engines are driving new perspectives on the interaction between fuels and engines. Fuels that reliefs the burden on engine manufacturers to reach these goals are of particular interest. A low carbon fuel with a higher volatility and heating value than diesel is one such fuel that reduces engine-out emissions and carbon footprint from the entire hydrocarbon lifecycle (well-to-wheel) and improves fuel efficiency, which is a main enabler for gasoline compression ignition (GCI) technology. The present study investigated the potential of GCI technology by evaluating the performance of a low carbon high efficiency, high reactivity gasoline fuel in Doosan’s 6L medium duty diesel engine.
Technical Paper

Combustion System Optimization of a Light-Duty GCI Engine Using CFD and Machine Learning

2020-04-14
2020-01-1313
In this study, the combustion system of a light-duty compression ignition engine running on a market gasoline fuel with Research Octane Number (RON) of 91 was optimized using computational fluid dynamics (CFD) and Machine Learning (ML). This work was focused on optimizing the piston bowl geometry at two compression ratios (CR) (17 and 18:1) and this exercise was carried out at full-load conditions (20 bar indicated mean effective pressure, IMEP). First, a limited manual piston design optimization was performed for CR 17:1, where a couple of pistons were designed and tested. Thereafter, a CFD design of experiments (DoE) optimization was performed where CAESES, a commercial software tool, was used to automatically perturb key bowl design parameters and CONVERGE software was utilized to perform the CFD simulations. At each compression ratio, 128 piston bowl designs were evaluated.
Technical Paper

Auto-ignition and Anti-Knock Evaluation of Dicyclopentadiene-PRF and TPRF Blends

2021-09-21
2021-01-1160
The increasing demand for high-octane fuels is pushing the combustion research towards investigating new potential fuels and octane boosters. In addition to their high-octane, those additives should be environmentally friendly. In this study, the anti-knock properties of Dicyclopentadiene (DCPD) as an additive to primary reference fuels (PRF) and toluene primary reference fuels (TPRF) have been investigated. The Research octane number (RON) and Motor octane number (MON) were measured using Cooperative Fuels Research (CFR) engine for four different fuel blends; PRF 60 + 10% DCPD, PRF 60 + 20% DCPD, PRF 70 + 10% DCPD and TPRF 70 + 10% DCPD. In addition, homogenous charge compression ignition (HCCI) was also performed using the CFR engine to show the effect of DCPD on suppressing low temperature chemistry of reference fuels.
Journal Article

Cylinder Pressure Based Fuel Path Control for Non-Conventional Combustion Modes

2015-09-06
2015-24-2508
Model-based control strategies along with an adapted calibration process become more important in the overall vehicle development process. The main drivers for this development trend are increasing numbers of vehicle variants and more complex engine hardware, which is required to fulfill the more and more stringent emission legislation and fuel consumption norms. Upcoming fundamental changes in the homologation process with EU 6c, covering an extended range of different operational and ambient conditions, are suspected to intensify this trend. One main reason for the increased calibration effort is the use of various complex aftertreatment technologies amongst different vehicle applications, requiring numerous combustion modes. The different combustion modes range from heating strategies for active Diesel Particulate Filter (DPF) regeneration or early SCR light-off and rich combustion modes to purge the NOx storage catalyst (NSC) up to partially premixed combustion modes.
Journal Article

Fuel Economy Benefits for Commercial Diesel Engines with Waste Heat Recovery

2015-09-29
2015-01-2807
In the near future engine emitted carbon dioxides (CO2) are going to be limited for all vehicle categories with respect to the Green House Gases (GHG) norms. To tackle this challenge, new concepts need to be developed. For this reason waste heat recovery (WHR) is a promising research field. For commercial vehicles the first phase of CO2 emission legislation will be introduced in the USA in 2014 and will be further tightened towards 2030. Besides the US, CO2 emission legislation for commercial engines will also be introduced in Europe in the near future. The demanded CO2 reduction calls for a better fuel economy which is also of interest for the end user, specifically for the owners of heavy duty diesel vehicles with high mileages. To meet these future legislation objectives, a waste heat recovery system is a beneficial solution of recovering wasted energies from different heat sources in the engine.
Journal Article

Feedforward Control Approach for Digital Combustion Rate Shaping Realizing Predefined Combustion Processes

2015-04-14
2015-01-0876
The aim of this research collaboration focuses on the realization of a novel Diesel combustion control strategy, known as Digital Combustion Rate Shaping (DiCoRS) for transient engine operation. Therefore, this paper presents an initial, 3D-CFD simulation based evaluation of a physical model-based feedforward controller, considered as a fundamental tool to apply real-time capable combustion rate shaping to a future engine test campaign. DiCoRS is a promising concept to improve noise, soot and HC/CO emissions in parallel, without generating drawbacks in NOx emission and combustion efficiency. Instead of controlling distinct combustion characteristics, DiCoRS aims at controlling the full combustion process and therefore represents the highest possible degree of freedom for combustion control. The manipulated variable is the full injection profile, generally consisting of multiple injection events.
X