Refine Your Search

Search Results

Viewing 1 to 8 of 8
Journal Article

Fuel Cell System Development: A Strong Influence on FCEV Performance

2018-04-03
2018-01-1305
In this article, the development challenges of a fuel cell system are explained using the example of the BREEZE! fuel cell range extender (FC-REX) applied in an FEV Liiona. The FEV Liiona is a battery electric vehicle based on a Fiat 500 developed by FEV. The BREEZE! system is the first applied 30 kW low temperature polymer electrolyte membrane (LT PEM) fuel cell system in the subcompact vehicle class. Due to the highly integrated system approach and dry cathode operation, a compact design of the range extender module with a system power density of 0.45 kW/l can be achieved so that the vehicle interior including trunk remains completely usable. System development for fuel cells significantly influences performance, efficiency, package, durability, and required maintenance effort of a fuel cell electric powertrain. In order to ensure safe and reliable operation, the fuel cell system has to be supplied with sufficient amounts of air, hydrogen, and coolant flows.
Technical Paper

Hardware-in-the-Loop Testing of Electric Traction Drives with an Efficiency Optimized DC-DC Converter Control

2020-04-14
2020-01-0462
In order to reduce development cost and time, frontloading is an established methodology for automotive development programs. With this approach, particular development tasks are shifted to earlier program phases. One prerequisite for this approach is the application of Hardware-in-the-Loop test setups. Hardware-in-the-Loop methodologies have already successfully been applied to conventional as well as electrified powertrains considering various driving scenarios. Regarding driving performance and energy demand, electrified powertrains are highly dependent on the dc-link voltage. However, there is a particular shortage of studies focusing on the verification of variable dc-link voltage controls by Hardware-in-the-Loop setups. This article is intended to be a first step towards closing this gap. Thereto, a Hardware-in-the-Loop setup of a battery electric vehicle is developed.
Technical Paper

On Predictive Nozzle Simulations with Advanced Equations of State and Pressure Boundary Conditions

2022-03-29
2022-01-0504
The reduction of harmful emissions is a key challenge in fighting climate change and global warming. Besides battery electric vehicles (BEVs), improved engine efficiency and alternate fuels, such as e-fuels or biofuels, can improve the emission budget of the transportation sector. Pred ictive simulations can be utilized as these avoid relying on slow manufacturing processes and expensive experiments. As the properties of alternative fuels can change drastically compared to classical fuels, even engine parameters, such as the mass flow rate, need to be reevaluated and optimized. However, simulation frameworks often rely on mass flow rates as input quantity, and hence, a prediction is impossible. This paper gives accurate pressure-based boundary conditions for multiphase systems and focuses on equations of state (EOS) employed in homogeneous equilibrium models (HEMs). Additionally, a dual-density approach is introduced to correct modeling errors that are intrinsic to a particular EOS.
Technical Paper

Lightweight Automobiles ALLIANCE Project: First Results of Environmental and Economic Assessment from a Life-Cycle Perspective

2018-05-30
2018-37-0027
In the last years the research activities in the field of lightweighting have been advancing rapidly. The introduction of innovative materials and manufacturing technologies has allowed significant weight reduction. Despite this, novel technologies and materials have not reached a wide distribution. The reasons for this are mainly high production costs and environmental impacts of manufacturing that do not compensate benefits during operation. The paper deals with the AffordabLe LIghtweight Automobiles AlliaNCE (ALLIANCE) project which has the goal of developing novel advanced automotive materials and production technologies, aiming at an average 25% weight reduction over 100 k units/year, at costs of <3 €/kg. The article is focussed on Work Package 1 (WP1) of the project, aimed at estimating the full attributes of innovative design solutions by assessing costs, energy demand and GWP over the entire vehicle Life Cycle (LC).
Technical Paper

Simulating and Reducing Noise Excited in an EV Powertrain by a Switched Reluctance Machine

2014-06-30
2014-01-2069
The noise performance of fully electric vehicles is essential to ensure that they gain market acceptance. This can be a challenge for several reasons. Firstly, there is no masking from the internal combustion engine. Next, there is pressure to move to cost-efficient motor designs such as Switched Reluctance Motors, which have worse vibro-acoustic behaviour than their Permanent Magnet counterparts. Finally, power-dense, higher speed motors run closer fundamental frequency to the structural resonances of the system [1]. Experience has shown that this challenge is frequently not met. Reputable suppliers have designed and developed their “quiet” subsystems to state of the art levels, only to discover that the assembled E-powertrain is unacceptably noisy. The paper describes the process and arising results for the noise simulation of the complete powertrain.
Technical Paper

Interpretation Tools and Concepts for the Heat Management in the Drive Train of the Future

2011-04-12
2011-01-0650
Thermal management describes measures that result in the improved engine or vehicle operation in terms of energetics and thermo mechanics. In this context the involvement of the entire power train becomes more important as the interaction between engine, transmission and temperature sensitive battery package (of hybrid vehicles or electric vehicles with range extender) or the utilization of exhaust gas thermal energy play a major role for future power train concepts. The aim of thermal management strategies is to reduce fuel consumption while simultaneously increasing the comfort under consideration of all temperature limits. In this case it is essential to actively control the heat flow, in order to attain the optimal temperature distribution in the power train components.
Technical Paper

Sustainable Propulsion in a Post-Fossil Energy World: Life-Cycle Assessment of Renewable Fuel and Electrified Propulsion Concepts

2024-07-02
2024-01-3013
Faced with one of the greatest challenges of humanity – climate change – the European Union has set out a strategy to achieve climate neutrality by 2050 as part of the European Green Deal. To date, extensive research has been conducted on the CO2 life cycle analysis of mobile propulsion systems. However, achieving absolute net-zero CO2 emissions requires the adjustment of the relevant key performance indicators for the development of mobile propulsion systems. In this context, research is presented that examines the ecological and economic sustainability impacts of a hydrogen-fueled mild hybrid vehicle, a hydrogen-fueled 48V hybrid vehicle, a methanol-fueled 400V hybrid vehicle, a methanol-to-gasoline-fueled plug-in hybrid vehicle, a battery electric vehicle, and a fuel cell electric vehicle. For this purpose, a combined Life-Cycle Assessment (LCA) and Life-Cycle Cost Assessment was performed for the different propulsion concepts.
Technical Paper

Designing a Prototype of a Mobile Charging Robot for Charging of Electric Vehicles

2024-07-02
2024-01-2990
As the market for electric vehicles grows, so does the demand for appropriate charging infrastructure. The availability of sufficient charging points is essential to increase public acceptance of electric vehicles and to avoid the so-called “charging anxiety”. However, the charging stations currently installed may not be able to meet the full charging demand, especially in areas where there is a general lack of grid infrastructure, or where the fluctuating nature of charging demand requires flexible, high-power charging solutions that do not require expensive grid extensions. In such cases, the use of mobile charging stations provides a good opportunity to complement the existing charging network. This paper presents a prototype of a mobile charging solution that is being developed as part of an ongoing research project, and discusses different use cases.
X