Refine Your Search

Topic

Search Results

Journal Article

Dedicated GTL Vehicle: A Calibration Optimization Study

2010-04-12
2010-01-0737
GTL (Gas-To-Liquid) fuel is well known to improve tailpipe emissions when fuelling a conventional diesel vehicle, that is, one optimized to conventional fuel. This investigation assesses the additional potential for GTL fuel in a GTL-dedicated vehicle. This potential for GTL fuel was quantified in an EU 4 6-cylinder serial production engine. In the first stage, a comparison of engine performance was made of GTL fuel against conventional diesel, using identical engine calibrations. Next, adaptations enabled the full potential of GTL fuel within a dedicated calibration to be assessed. For this stage, two optimization goals were investigated: - Minimization of NOx emissions and - Minimization of fuel consumption. For each optimization the boundary condition was that emissions should be within the EU5 level. An additional constraint on the latter strategy required noise levels to remain within the baseline reference.
Journal Article

Tomorrows Diesel Fuel Diversity - Challenges and Solutions

2008-06-23
2008-01-1731
Regulated emissions, CO2-values, comfort, good driveability, high reliability and costs, this is the main frame for all future powertrain developments. In this frame, the diesel powertrain, not only for passenger cars, but also for commercial vehicle applications, faces some challenges in order to fulfil the future European and current US emission legislations while keeping the fuel consumption benefit, good driveability and an acceptable cost frame. One of these challenges is the varying fuel qualities of diesel fuel in different countries including different cetane number, volatility, sulphur content and different molecular composition. In addition to that in the future, more and more alternative fuels with various fuel qualities and properties will be launched into the market for economical and environmental reasons. At present, the control algorithms of the injection system applied in most diesel engines is open loop control.
Technical Paper

Active Noise Cancellation at Powertrain Oil Pan

2007-05-15
2007-01-2422
Under city driving conditions, the powertrain represents one of the major vehicle exterior noise sources. Especially at idle and during full load acceleration, the oil pan contributes significantly to the overall powertrain sound emission. The engine oilpan can be a significant contributor to the powertrain radiated sound levels. Passive optimization measures, such as structural optimization and acoustic shielding, can be limited by e.g. light-weight design, package and thermal constraints. Therefore, the potential of the Active Structure Acoustic Control (ASAC) method for noise reduction was investigated within the EU-sponsored project InMAR. The method has proven to have significant noise reduction potential with respect to oil pan vibration induced noise. The paper reports on activities within the InMAR project with regard to a passenger car oil pan application of an ASAC system based on piezo-ceramic foil technology.
Technical Paper

Mechanical Testing - Still Necessary!

2007-04-16
2007-01-1768
Over the last decades, the use of computers has become an integral part of the engine development process. Computer-based tools are increasingly used in the design process, and especially the layout of the various subsystems is conducted by means of simulation models. Computer-aided engineering plays a central role e.g. in the design of the combustion process as well as with regards to work performed in the area of engine mechanics, where CFD, FEM, and MBS are applied. As a parallel trend, it can be observed that various engine performance characteristics such as e.g. the specific power output and the power-to-weight ratio have undergone an enormous increase, a trend which to some extent counteracts the increase in safety against malfunction and failure. As yet, due to the constant need for further optimization, mechanical testing and verification processes have not become redundant, and it is assumed that they will remain indispensable for the foreseeable future.
Technical Paper

Optimized Layout of Gasoline Engines for Hybrid Powertrains

2008-01-09
2008-28-0024
Due to the complex powertrain layout in hybrid vehicles, different configurations concerning internal combustion engine, electric motor and transmission can be combined - as is demonstrated by currently produced hybrid vehicles ([1], [2]). At the Institute for Combustion Engines (VKA) at RWTH Aachen University a combination of simulation, Design of Experiments (DoE) and numerical optimization methods was used to optimize the combustion engine, the powertrain configuration and the operation strategy in hybrid powertrains. A parametric description allows a variation of the main hybrid parameters. Parallel as well as power-split hybrid powertrain configurations were optimized with regard to minimum fuel consumption in the New European Driving Cycle (NEDC). Besides the definition of the optimum configuration for engine, powertrain and operation strategy this approach offers the possibility to predict the fuel consumption for any modifications of the hybrid powertrains.
Technical Paper

Evaluation of Modeling Approaches for NOx Formation in a Common-Rail DI Diesel Engine within the Framework of Representative Interactive Flamelets (RIF)

2008-04-14
2008-01-0971
Representative Interactive Flamelets (RIF) have proven successful in predicting Diesel engine combustion. The RIF concept is based on the assumption that chemistry is fast compared to the smallest turbulent time scales, associated with the turnover time of a Kolmogorov eddy. The assumption of fast chemistry may become questionable with respect to the prediction of pollutant formation; the formation of NOx, for example, is a rather slow process. For this reason, three different approaches to account for NOx emissions within the flamelet approach are presented and discussed in this study. This includes taking the pollutant mass fractions directly from the flamelet equations, a technique based on a three-dimensional transport equation as well as the extended Zeldovich mechanism. Combustion and pollutant emissions in a Common-Rail DI Diesel engine are numerically investigated using the RIF concept. Special emphasis is put on NOx emissions.
Technical Paper

Prediction of Combustion Delay and -Duration of Homogeneous Charge Gasoline Engines based on In-Cylinder Flow Simulation

2009-06-15
2009-01-1796
In this paper a new approach is presented to evaluate the combustion behaviour of homogeneous gasoline engines by predicting burn delay and -duration in a way which can be obtained under the time constraints of the development process. This is accomplished by means of pure in-cylinder flow simulations without a classical combustion model. The burn delay model is based on the local distribution of the turbulent flow near the spark plug. It features also a methodology to compare different designs regarding combustion stability. The correlation for burn duration uses a turbulent characteristic number that is obtained from the turbulent flow in the combustion chamber together with a model for the turbulent burning velocity. The results show good agreement with the combustion process of the analyzed engines.
Technical Paper

Gas Exchange Optimization and the Impact on Emission Reduction for HSDI Diesel Engines

2009-04-20
2009-01-0653
The main tasks for all future powertrain developments are: regulated emissions, CO2-values, comfort, good drivability, high reliability and affordable costs. One widely discussed approach for fuel consumption improvement within passenger car applications, is to incorporate the downsizing effect. To attain constant engine performance an increase of boost pressure and/or rated speed is mandatory. In both cases, the mass flow rate through the intake and exhaust ports and valves will rise. In this context, the impact of the port layout on the system has to be reassessed. In this paper, the impact of the port layout on a modern diesel combustion system will be discussed and a promising concept shall be described in detail. The investigations shown include flow measurements, PIV measurements of intake flow, CFD simulations of the flow field during intake and results from the thermodynamic test bench. One of the important topics is to prove the impact of the flow quality on the combustion.
Technical Paper

Specific Durability Testing with FEV Master Program

2010-04-12
2010-01-0922
During the past years, there has been an increasing tendency to seriously question and break up old and ingrained structures in combustion engine testing. The reason for this is the continuously increasing number of engine and vehicle variants and a variety of applications resulting from it, which significantly push up development costs and times when carrying out the classical testing patterns. The following article by FEV Motorentechnik GmbH introduces a comprehensive test methodology for purposeful endurance testing of modern drive units (in particular from the fields of passenger cars and commercial vehicles). The procedure and the testing philosophy are explained in detail, illustrated by a concrete development example.
Technical Paper

Acoustics of Hybrid Vehicles

2010-06-09
2010-01-1402
The technology used in hybrid vehicle concepts is significantly different from conventional vehicle technology with consequences also for the noise and vibration behavior. In conventional vehicles, certain noise phenomena are masked by the engine noise. In situations where the combustion engine is turned off in hybrid vehicle concepts, these noise components can become dominant and annoying. In hybrid concepts, the driving condition is often decoupled from the operation state of the combustion engine, which leads to unusual and unexpected acoustical behavior. New acoustic phenomena such as magnetic noise due to recuperation occur, caused by new components and driving conditions. The analysis of this recuperation noise by means of interior noise simulation shows, that it is not only induced by the powertrain radiation but also by the noise path via the powertrain mounts. The additional degrees of freedom of the hybrid drive train can also be used to improve the vibrational behavior.
Technical Paper

Prediction of Hydrodynamic Bearing Behaviour for Pre-layout of Cranktrain Dimensions

2010-10-25
2010-01-2186
Calculating the bearing reliability and behavior is one of the primary tasks which have to be performed to define the main dimensions of the cranktrain of an internal combustion engine. Since the bearing results are essential for the pre-layout of the cranktrain, the conclusion on the bearing safety should be met as early as possible. Therefore detailed simulations like T-EHD or EHD analysis may not be applied to define the dimensions in such an early development phase. In the frame of this study a prediction methodology, based on a HD bearing approach, for bearing reliability of inline-4 crankshafts of passenger cars is proposed. In this way not only the design phase is shortened but also achieving the optimal solution is simplified. Moreover the requirement of a CAD model is eliminated for the preliminary design phase. The influencing parameters on the bearing behavior are first selected and divided into two groups: geometry and loading.
Technical Paper

Analytical and Empirical Methods for Optimization of Cylinder Liner Bore Distortion

2001-03-05
2001-01-0569
Beside the traditional prediction of stresses and verification by mechanical testing the optimization of cylinder liner bore distortion is one of today's most important topics in crankcase structure development. Low bore distortion opens up potentials for optimizing the piston group. As the piston rings achieve better sealing characteristics in a low deformation cylinder liner, oil consumption and blow-by are reduced. For unchanged oil consumption and blow-by demands, engine friction and subsequently, fuel consumption could be reduced by decreasing the pre-tension of the piston rings. From the acoustical point of view an optimization of piston-slap noise is often based on an optimized bore distortion behavior. Apart from basics to the behavior of liner bore distortion the paper presents advanced analytical and empirical methods for detailed prediction, verification and optimization of bore distortion taking into account the effective engine operation conditions.
Technical Paper

Oil Aeration in Combustion Engines - Analysis and Optimization

2001-03-05
2001-01-1074
Like all technical fluids, lubricants are able to solve gases. While solved gas is a neutral part of the lubricant, dissolved gas has an influence especially on the compressibility behavior. The effects of oil aeration on engine drive causes malfunctions of several components. A successful optimization of the oil circulation concerning the oil aeration presupposes a safe and reproducible measuring procedure. The FEV has developed a measurement apparatus according to the principle of the volume measurement which allows a simple but efficient oil aeration measurement.
Technical Paper

Low Emission Concept for SULEV

2001-03-05
2001-01-1313
Today, SULEV legislation represents the most stringent emission standard for vehicles with combustion engines, and it will be introduced starting by Model Year 2003. In order to meet such standards, even higher effort is required for the development of the exhaust gas emission concept of SI engines. Beyond a facelift of the combustion system, exhaust gas aftertreatment, and the engine management system, new approaches are striven for. The principle keys are well known: low HC feed gas, high thermal load for quick light-off, exhaust system with low heat capacity and highly effective exhaust gas aftertreatment.
Technical Paper

Future Power Plants For Cars

2001-10-01
2001-01-3192
Environmental concern demands that emissions and fuel consumption of vehicles have to improve considerably in the next 10 years. New technologies for gasoline engines, downsizing with high boosting, direct injection and fully variable valve train systems, are being developed. For Diesel engines, improved components including piezobased injectors and particle filters are expected. In the drive train new starter-generator systems as well as automated manual transmissions are being developed. In parallel alternative fuels are investigated and the use of hybrid drives and fuel cells are developed. This paper reports the progress made in the recent years and gives a comparative assessment on the different technologies with a prediction of the introduction dates and volumes into the market.
Technical Paper

A New TEHD Approach for Sophisticated Simulation of Journal Bearings

2001-10-01
2001-01-3367
The new Thermo-Elasto-Hydro-Dynamic (TEHD) code developed by FEV, is designed to improve the predictability of journal bearing designs and thereby increase the reliability of safety factors in the development of highly loaded internal combustion engines. Advanced analysis tools are evaluated by their performance as well as by their ease of use. High performance means on the one hand: taking into account all the important characteristics, like bearing elasticity or cavitation effects, to mention only some major parameters for modern journal bearing analysis. On the other hand: an economic run-time behavior must be a key feature concerning usability of the TEHD-demands for daily development praxis. Ease of use means also, that the TEHD model can easily be used as a plug-in routine of an already existing software package that is well known to the development departments.
Technical Paper

Development of Fuel Cell System Air Management Utilizing HIL Tools

2002-03-04
2002-01-0409
In this paper, boosting strategies are investigated for part load operation of typical fuel-cell-systems. The optimal strategy can mainly be obtained by simulation. The boosting strategy is one of the most essential parameters for design and operation of a fuel-cell-system. High pressure ratios enable high power densities, low size and weight. Simultaneously, the demands in humidification and water recovery for today's systems are reduced. But power consumption and design effort of the system increases strongly with the pressure level. Therefore, the main focus must be on the system efficiencies at part load. In addition, certain boundary conditions like the inlet temperature of the fuel-cell stack must be maintained. With high pressure levels the humidification of the intake air before, within or after the compressor is not sufficient to dissipate enough heat. Vaporization during the compression process shows efficiency advantages while the needs in heat dissipation decreases.
Technical Paper

A Capacity Oriented Quality Assurance Method by Using Modular Containerized Test Cells

2002-11-19
2002-01-3456
The requirements for diesel and gasoline engines are continuously increasing with respect to emissions, fuel consumption and durability. Besides the engine development process the quality of the production engine itself has to be ensured. This paper discusses alternative philosophies and approaches in terms of the quality management process. Based on a detailed analysis of the required equipment advanced solutions are presented. Modular containerized test cells are described being equipped exactly to the current testing task ready to use in low infrastructure. The testing capacity of the facility can be adjusted to the actual production volume by simply removing or adding modular test cells. Thus, at every facility the testing tasks can be executed successfully and the investment can be kept low.
Technical Paper

Start-Up Behavior of Fuel Processors for PEM Fuel Cell Applications

2003-03-03
2003-01-0420
This paper focuses on start-up technology for fuel processing systems with special emphasis on gasoline fueled burners. Initially two different fuel processing systems, an autothermal reformer with preferential oxidation and a steam reformer with membrane, are introduced and their possible starting strategies are discussed. Energy consumption for preheating up to light-off temperature and the start-up time is estimated. Subsequently electrical preheating is compared with start-up burners and the different types of heat generation are rated with respect to the requirements on start-up systems. Preheating power for fuel cell propulsion systems necessarily reaches up to the magnitude of the electrical fuel cell power output. A gasoline fueled burner with thermal combustion has been build-up, which covers the required preheating power.
Technical Paper

Sound Quality and Engine Performance Development Utilizing Air-to-Air Simulation and Interior Noise Synthesis

2003-05-05
2003-01-1652
The sound quality and performance of an automotive engine are both significantly influenced by the “air-to-air” system, i.e., the intake system, the exhaust system, and the engine gas dynamics. Only a full systems approach can result in an optimized air-to-air system, which fulfills engine performance requirements, overall sound pressure level targets for airborne vehicle noise, as well as sound quality demands. This paper describes an approach, which considers the intake system, engine, and exhaust system within one CAE model that can be utilized for engine performance calculations as well as acoustic simulations. Examples comparing simulated and measured sound are discussed. Finally, the simulated sound (e.g., at the tailpipe of the exhaust system) is combined with an interior noise simulation technique to evaluate its influence inside the vehicle's interior.
X