Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Mechanical Testing - Still Necessary!

2007-04-16
2007-01-1768
Over the last decades, the use of computers has become an integral part of the engine development process. Computer-based tools are increasingly used in the design process, and especially the layout of the various subsystems is conducted by means of simulation models. Computer-aided engineering plays a central role e.g. in the design of the combustion process as well as with regards to work performed in the area of engine mechanics, where CFD, FEM, and MBS are applied. As a parallel trend, it can be observed that various engine performance characteristics such as e.g. the specific power output and the power-to-weight ratio have undergone an enormous increase, a trend which to some extent counteracts the increase in safety against malfunction and failure. As yet, due to the constant need for further optimization, mechanical testing and verification processes have not become redundant, and it is assumed that they will remain indispensable for the foreseeable future.
Technical Paper

A New Approach for Prediction of Crankshaft Stiffness and Stress Concentration Factors

2010-04-12
2010-01-0949
This paper introduces a new approach based on a statistical investigation and finite element analysis (FEA) methodology to predict the crankshaft torsional stiffness and stress concentration factors (SCF) due to torsion and bending which can be used as inputs for simplified crankshaft multibody models and durability calculations. In this way the reduction of the development time and effort of passenger car crankshafts in the pre-layout phase is intended with a least possible accuracy sacrifice. With the designated methodology a better approximation to reality is reached for crank torsional stiffness and SCF due to torsion and bending compared with the empirical approaches, since the prediction does not depend on the component tests with limited numbers of specimen, as in empirical equations, but on various FE calculations.
Technical Paper

Specific Durability Testing with FEV Master Program

2010-04-12
2010-01-0922
During the past years, there has been an increasing tendency to seriously question and break up old and ingrained structures in combustion engine testing. The reason for this is the continuously increasing number of engine and vehicle variants and a variety of applications resulting from it, which significantly push up development costs and times when carrying out the classical testing patterns. The following article by FEV Motorentechnik GmbH introduces a comprehensive test methodology for purposeful endurance testing of modern drive units (in particular from the fields of passenger cars and commercial vehicles). The procedure and the testing philosophy are explained in detail, illustrated by a concrete development example.
Technical Paper

Prediction of Hydrodynamic Bearing Behaviour for Pre-layout of Cranktrain Dimensions

2010-10-25
2010-01-2186
Calculating the bearing reliability and behavior is one of the primary tasks which have to be performed to define the main dimensions of the cranktrain of an internal combustion engine. Since the bearing results are essential for the pre-layout of the cranktrain, the conclusion on the bearing safety should be met as early as possible. Therefore detailed simulations like T-EHD or EHD analysis may not be applied to define the dimensions in such an early development phase. In the frame of this study a prediction methodology, based on a HD bearing approach, for bearing reliability of inline-4 crankshafts of passenger cars is proposed. In this way not only the design phase is shortened but also achieving the optimal solution is simplified. Moreover the requirement of a CAD model is eliminated for the preliminary design phase. The influencing parameters on the bearing behavior are first selected and divided into two groups: geometry and loading.
Technical Paper

A New TEHD Approach for Sophisticated Simulation of Journal Bearings

2001-10-01
2001-01-3367
The new Thermo-Elasto-Hydro-Dynamic (TEHD) code developed by FEV, is designed to improve the predictability of journal bearing designs and thereby increase the reliability of safety factors in the development of highly loaded internal combustion engines. Advanced analysis tools are evaluated by their performance as well as by their ease of use. High performance means on the one hand: taking into account all the important characteristics, like bearing elasticity or cavitation effects, to mention only some major parameters for modern journal bearing analysis. On the other hand: an economic run-time behavior must be a key feature concerning usability of the TEHD-demands for daily development praxis. Ease of use means also, that the TEHD model can easily be used as a plug-in routine of an already existing software package that is well known to the development departments.
Technical Paper

A Capacity Oriented Quality Assurance Method by Using Modular Containerized Test Cells

2002-11-19
2002-01-3456
The requirements for diesel and gasoline engines are continuously increasing with respect to emissions, fuel consumption and durability. Besides the engine development process the quality of the production engine itself has to be ensured. This paper discusses alternative philosophies and approaches in terms of the quality management process. Based on a detailed analysis of the required equipment advanced solutions are presented. Modular containerized test cells are described being equipped exactly to the current testing task ready to use in low infrastructure. The testing capacity of the facility can be adjusted to the actual production volume by simply removing or adding modular test cells. Thus, at every facility the testing tasks can be executed successfully and the investment can be kept low.
Technical Paper

Variable Compression Ratio - A Design Solution for Fuel Economy Concepts

2002-03-04
2002-01-1103
The challenge to reduce fuel consumption in S.I. engines is leading to the application of new series production technologies: including direct injection and, recently, the variable valve train, both aiming at unthrottled engine operation. In addition to these technologies, turbo- or mechanical supercharging is of increasing interest because, in principle, it offers a significant potential for improved fuel economy. However, a fixed compression ratio normally leads to a compromise, in that the charged engine is more of a performance enhancement than an improver of fuel economy. Fuel efficient downsizing concepts can be realized through the application of variable compression ratio. In this paper, a variable compression ratio design solution featuring eccentric movement of the crankshaft is described. Special attention is given to the integration of this solution into the base engine.
Technical Paper

Modern Gear Train Simulation Process for the Virtual Engine and Transmission Development

2006-04-03
2006-01-0585
Current simulation tools for the investigation of the dynamic system response as well as for the component stresses on the basis of multi-body and finite-element techniques are integral part of today's powertrain development efforts. These tools are typical used for the analysis and optimization of shafts, clutches, chain/belt drives, bearings, levers, brackets, housings and many other components. An exception is made by gears which today are still frequently investigated by the help of semi-empirical methods based on DIN, ISO, AGMA and the specific knowledge base of well experienced developers. The main difficulty is that the gears are rolling off via large contact surfaces with complex nonlinear mechanical contact properties. Within the scope of research work FEV developed a new method for the analysis and optimization of gear drives based on comercial multi-body and finite-element software platforms.
Technical Paper

Combustion Engine Design under use of Design for Six Sigma (DFSS)

2005-04-11
2005-01-1611
Nowadays internal combustion engine design is characterized by a faster development time with increased levels of quality, NVH, specific power and lower weight all being demanded at a lower production cost. This requires a new and systemic design management from the outset of the concept to SOP (Start of Production). The design for Six Sigma (DFSS) process is the surest way to achieve the above mentioned development goals. Within a Six Sigma approach, manufacturing and serial production issues are considered from the beginning of the development phase. Based on examples, the methodology will be explained in single steps. The explanation will include QFD, FMEA (product and process), scorecards, DOE and kneading process with its tolerance analysis and process capability investigations. The use of these different tools for each phase of the design process will be described.
Technical Paper

Evaluation of Crankshaft Clearance Influence on Specific Roughness Noise Concern

1999-05-17
1999-01-1771
Passenger car customer expects both: low interior noise level and a sound quality, adapted to vehicle driving condition. The latter should be based upon a comfortable sound character without outstanding noise effects. One of the very unpleasant noise characteristics is roughness, also called rap noise or rumbling noise. Beside intake noise and powertrain structure bending, the dynamic crank train behaviour is one of the potential origins of a rough noise pattern. Material properties of the crankshaft and the layout of crankshaft damper can influence roughness as well as the crank train clearances. Subjects of this study, which was performed on a 4-cylinder spark-ignition (SI) engine, were the identification and objectivation of a specific noise concern which occurred during vehicle acceleration. Aim was to evaluate the noise concern sensitivity to the crank train clearances and to define optimum clearance ranges for noise quality improvement.
X