Refine Your Search

Topic

Author

Search Results

Journal Article

Brake Dynamometer Test Variability Part 2- Description of the Influencing Factors

2011-09-18
2011-01-2374
The ISO TC22/SWG2 - Brake Lining Committee established a task force to determine and analyze root causes for variability during dynamometer brake performance testing. SAE paper 2010-01-1697 “Brake Dynamometer Test Variability - Analysis of Root Causes” [1] presents the findings from the phases 1 and 2 of the “Test Variability Project.” The task force was created to address the issue of test variability and to establish possible ways to improve test-to-test and lab-to-lab correlation. This paper presents the findings from phase 3 of this effort-description of factors influencing test variability based on DOE study. This phase concentrated on both qualitative and quantitative description of the factors influencing friction coefficient measurements during dynamometer testing.
Journal Article

An Assessment of Two Piston Bowl Concepts in a Medium-Duty Diesel Engine

2012-04-16
2012-01-0423
Two combustion systems were developed and optimized for an engine for a power cylinder of 0.8-0.9L/cylinder. The first design was a re-entrant bowl concept which was based on the combustion system of a smaller engine with roughly 0.5L/cylinder. The second design was a chamfered bowl concept, a variant of a reentrant bowl that deliberately splits fuel between the bowl and the squish region. For each combustion system concept, nozzle tip protrusion, swirl, and nozzle configuration (number of holes, nozzle flow, and spray angle) were optimized. Several similarities between combustion system concepts were noted, including the optimal swirl and number of holes. The resulting optimums for each concept were compared. The chamfered combustion system was found to have better part-load emissions and fuel consumption tradeoffs. Full load performance was similar at low speed between the two combustion systems, but the reentrant combustion system had advantages at high engine speed and load.
Technical Paper

Material Characterization of Powder-Forged Copper Steels

1991-02-01
910155
Powder metal based copper steels have found increased use in automotive applications, an example being powder-forged connecting rods. A characterization study was conducted to determine the effects of carbon content and manganese sulphide addition on the mechanical properties and machinability of these materials. Steel powder mixes containing 2% Cu and various graphite contents, with and without a MnS addition were pressed, sintered and forged to full density. Forged samples were then tested for tensile properties, hardness and fatigue strength. Machinability was determined by measuring tool life during drilling tests. It was found that increasing the carbon content from 0.28 to 0.69% has little effect on fatigue properties of powder-forged copper steels although the tensile, strength increased as expected. The addition of manganese sulphide did not affect the mechanical properties measured, but was found to significantly improve the machinability.
Technical Paper

Virtual Engine Dynamometer in Service Life Testing of Transmissions: A Comparison Between Real Engine and Electric Dynamometers as Prime Movers in Validation Test Rigs

2010-04-12
2010-01-0919
A test cell was developed for evaluating a 6-speed automatic transmission. The target vehicle had an internal combustion 5.4L gasoline V8 engine. An electric dynamometer was used to closely simulate the engine characteristics. This included generating mean torque from the ECU engine map, with a transient capability of 10,000 rpm/second. Engine inertia was simulated with a transient capability of 20,000 rpm/second, and torque pulsation was simulated individually for each piston, with a transient capability of 50,000 rpm/second. Quantitative results are presented for the correlation between the engine driven and the dynamometer driven transmission performance over more than 60 test cycles. Concerns about using the virtual engine in validation testing are discussed, and related to the high frequency transient performance required from the electric dynamometer. Qualitative differences between the fueled engine and electric driven testing are presented.
Technical Paper

Impact of Decarburization on the Fatigue Life of Powder Metal Forged Connecting Rods

2001-03-05
2001-01-0403
A main requirement for a satisfactory function and service life of a forged powder metal connecting rod is the fatigue strength. Fatigue strength mainly depends on design, material, microstructure, and surface condition. Much work has been accomplished to optimize these factors, but still a variety of surface defects such as localized porosity, roughness, oxide penetration, decarburization, etc., can be developed during manufacturing. These surface defects impact the fatigue strength in various ways. The impact of the decarburized layer depth on the fatigue life of a forged powder metal connecting rod is the focus of this work. Several connecting rods were submitted to a Weibull test at the same loading pattern. After the fatigue tests, the connecting rods were divided into groups with different decarburized layer depths. Both Maximum Likelihood Estimates (MLE) and Rank Regression (RR) techniques were used to analyze test results from all the groups obtained.
Technical Paper

Engine Excitation Decomposition Methods and V Engine Results

2001-04-30
2001-01-1595
Engine excitation forces have been studied in the past using one of two methods; a lumped sum or a totally distributed approach. The lumped sum approach gives the well-understood engine inherent unbalance and the totally distributed approach is used in engine CAE models to determine the overall engine response. The approach that will be described in this paper identifies an intermediate level of sophistication. The methodology implemented considers single cylinder forces on the engine block, piston side thrust and main bearing forces, and decomposes them into their order content. The forces are then phased and geometrically distributed appropriately for each cylinder and then each order is analyzed relative to know distributions that are NVH concerns, V-block breathing, block side wall breathing, and block lateral and vertical bending.
Technical Paper

Analysis of Instabilities and Power Flow in Brake Systems with Coupled Rotor Modes

2001-04-30
2001-01-1602
Recent investigations by others have indicated that the dynamic response of automotive brake rotors in the squeal frequency range involves the classic flexural modes as well as in-plane motion. While the latter set creates primarily in-plane displacements, there is coupling to transverse displacements that might produce vibrational instabilities. This question is investigated here by analyzing a modal model that includes two modes of the rotor and two modes of the pad and caliper assembly. Coupling between in-plane and transverse displacements is explicitly controlled. Results from this model indicate that the coupling does create vibrational instabilities. The instabilities, whose frequencies are in the squeal range, are characterized by power flow through the transverse motion of the rotor.
Technical Paper

Eliminating Piston Slap through a Design for Robustness CAE Approach

2003-05-05
2003-01-1728
Piston slap is a problem that plagues many engines. One of the most difficult aspects of designing to eliminate piston slap is that slight differences in operating conditions and in part geometries from build to build can create large differences in the magnitude of piston slap. In this paper we will describe a design for robustness CAE approach to eliminating piston slap. This approach considers the variations of the significant control factors in the design, e.g. piston pin offset, piston skirt design, etc. as well as the variation in the noise factors the system is subjected to, e.g. assembly clearance, skirt collapse, peak cylinder pressure, cylinder pressure rise rate, and location of peak cylinder pressure. Using analytical knowledge about how these various factors impact the generation of piston slap, a piston design for low levels of piston slap can be determined that is robust to the various noise factors.
Technical Paper

Development of a One-Dimensional Engine Thermal Management Model to Predict Piston and Oil Temperatures

2011-04-12
2011-01-0647
A new, 1-D analytical engine thermal management tool was developed to model piston, oil and coolant temperatures in the Ford 3.5L engine family. The model includes: a detailed lubrication system, including piston oil-squirters, which accurately represents oil flow rates, pressure drops and component heat transfer rates under non-isothermal conditions; a detailed coolant system, which accurately represents coolant flow rates, pressure drops and component heat transfer rates; a turbocharger model, which includes thermal interactions with coolant, oil, intake air and exhaust gases (modeled as air), and heat transfer to the surroundings; and lumped thermal models for engine components such as block, heads, pistons, turbochargers, oil cooler and cooling tower. The model was preliminarily calibrated for the 3.5L EcoBoost™ engine, across the speed range from 1500 to 5500 rpm, using wide-open-throttle data taken from an early heat rejection study.
Technical Paper

Rheological Characterization of Lubricant-Methanol-Water Emulsions

1992-10-01
922283
Rheological measurements were performed on a series of lubricants for flexible fuel vehicles, and blends of water or methanol in these oils. A series of measurements, including kinematic viscosity, viscosity at low and high shear rates, low shear viscosity under borderline pumping conditions, and density were performed on all oils and blends. The effects of mixing conditions, such as mixing speed and temperature on these properties were also studied. Viscosity increases when water emulsifies in oils. Methanol exhibits limited solubility in all oils, but more so in synthetic base oils. Viscosity tests at 248 K (-25°C) do not indicate the onset of critical pumping conditions, even at high concentrations of water or methanol. Tests at high shear rates at 323 K (50°C) suggest that water-oil emulsions are quite stable, while methanol-oil blends lose their methanol content either due to evaporation or shear-induced separation.
Technical Paper

A Feedgas HC Emission Model for SI Engines Including Partial Burn Effects

1993-10-01
932705
A model is presented which incorporates the key mechanisms in the formation and reduction of unburned HC emissions from spark ignited engines. The model includes the effects of piston crevice volume, oil layer absorption / desorption, partial burns, and in-cylinder and exhaust port oxidation. The mechanism for the filling and emptying of the piston crevice takes into account the location of the flame front so that the flow of both burned gas and unburned gas is recognized. Oxidation of unburned fuel is calculated with a global, Arrhenius-type equation. A newly developed submodel is included which calculates the amount of unburned fuel to be added to the cylinder as a result of partial burns. At each crankangle, the submodel compares the rate of change of the burned gas volume to the rate of change of the cylinder volume.
Technical Paper

Steel Powders for High Performance Automotive Parts

1994-03-01
940423
Increased use of powder-forged connecting rods in the automotive industry prompted an investigation into the suitability of powders from different suppliers for this application. Specifications developed by North American users call for ultra clean powders to enhance machinability and fatigue life. Powders from four manufacturers were each blended with graphite and lubricant, then pressed, sintered and forged to full density. Metallographic samples were prepared and evaluated for inclusion content. In addition, the powders were mixed to the composition of connecting rods, (C - 0.5%, Cu - 2% and MnS - 0.3%), and were similarly pressed, sintered and forged. Test bars were machined from the forged discs. Uniaxial fatigue tests were performed in the tension-compression mode and strain-life curves were developed. It was determined that all powders examined were very clean and were comparable in their inclusion content.
Technical Paper

Increased Fatigue Strength of Powder-Forged Connecting Rods by Optimized Shot Peening

1995-02-01
950384
Shot peening is a commonly used surface treatment process used to improve the fatigue life of aircraft, automotive and other highly stressed structural components. This improvement is attributed to the formation of compressive residual stress on the surface layer of the material by the impingement of spherical media (shot). The compressive residual stress usually decreases the tensile stress created in the component by “in service” external forces and therefore increases the fatigue strength of the part. To quantify the improvement resulting from shot peening, the fatigue behavior of powder-forged connecting rods and laboratory test bars from the base material (2% copper steel), both in the stress-free (unpeened) and surface treated (shot peened) condition were compared. The fatigue data were correlated with the residual stress generated at the surface. The stress magnitude and depth were determined using x-ray diffraction analysis.
Technical Paper

Friction and Scuffing Resistance Characteristics of Piston Materials as Investigated by a Reciprocating Test Rig

1995-02-01
951042
Friction and scuffing resistance characteristics of two piston alloy materials have been investigated by using a long-stroke reciprocating test rig. Tests were conducted under the same load, speed, and starved changing to dry lubrication conditions until the scuffing failure occurred, as indicated by a sudden change of the frictional force signal which was monitored continuously. Measured friction coefficient and scuffing threshold and life results were obtained, and the piston alloy with the better scuffing resistance capability has been identified. Surface texture of new and scuffed piston and cylinder bore specimen surfaces have been measured and characterized by a combination of amplitude and spacing parameters.
Technical Paper

Effect of Cylinder Head and Engine Block Temperature on HC Emissions from a Single Cylinder Spark Ignition Engine

1995-10-01
952536
A single-cylinder, two-valve engine was operated with independent cooling circuits for the engine block and cylinder head to investigate the effect of temperature distribution on HC emissions. The goal was to understand and quantify the mechanisms responsible for decreased HC emissions at elevated temperatures. Tests were run at a typical road load condition using two different fuels (a 97 RON blend and isopentane - to eliminate liquid fuel and oil layer absorption effects). The total HC emissions (97 RON fuel) decreased by 15-20% with an increase in either the cylinder head or engine block coolant temperature from 71 to 110 °C. When operating with isopentane the HC emissions decreased by 15-20% with an increase in the engine block temperature from 71 to 110 °C but were essentially unaffected by cylinder head temperature. This indicates that the cylinder head temperature primarily influenced the HC emissions from liquid fuel effects.
Technical Paper

Testing to Ensure the Achievement of Corporate Goals for Customer Satisfaction

1996-05-01
961276
A process for creating a Customer Correlated, Accelerated, Life Test is presented. This process, which results in a model for predicting reliability, has been applied to a cold weather piston scuff problem. In this paper, the authors will discuss development of frequency distributions for customer environmental and operational use, establishment of customer based failure criteria, development of an accelerated test based on degradation, selection of testing strategies, data analyses, and measurement techniques.
Technical Paper

Slipping Torque Converter Clutch Interface Temperature, Pressure and Torque Measurements Using Inductively Powered Radiotelemetry

1997-02-24
970679
Torque converter clutch friction interface and automatic transmission fluid (ATF) temperatures, pressure difference across the clutch piston, flow through the friction material grooves, and engine crankshaft dynamic torque were measured for typical operating conditions on a running transmission. The friction coefficient, clutch unit pressure, fraction of heat rejected to ATF flowing through the grooves, and time dependent thermal response were determined. Simplified heat transfer calculations were compared with thermal data. Clutch interface temperatures were assessed as they relate to the process of friction material and ATF degradation. The inductively powered radiotelemetry system was found to be a robust and powerful tool for investigating continuously slipping clutch system performance.
Technical Paper

Performance of Plasmaspray Coated Bore 4.6L-V8 Aluminum Block Engines in Dynamometer and Fleet Vehicle Durability Tests

1997-02-24
970008
Application process, and performance in engine dynamometer and high mileage vehicle fleet durability tests of Plasmaspray coated bore aluminum block engines are discussed. Fuel economy, oil consumption, power and wear data for Ford 4.6L-V8 aluminum block engines utilizing very low cost iron/iron oxide base coatings, and stainless steel/BN solid film lubricant Plasmasprayed coatings are presented. Test results from Ford's 100 hour Piston & Gasket Engine Dynamometer Durability Tests, and Fleet Vehicle Durability Tests show ring/bore wear reductions of more than 40% relative to production cast iron bore systems with Oil Economy averaging more than 13,600 km/l (8000 mi/qt).
Technical Paper

Engine Studies of Solid Film Lubricant Coated Pistons

1997-02-24
970009
An investigation describing engine friction reduction benefits attainable via the introduction of Solid Film Lubricants to piston skirts is presented. Ford II-25 thermoset and II-25 waterborne molybdenum disulfide based solid film lubricants were shown through single cylinder motored engine experiments, to produce piston system friction reductions of 12 to 17% at 1500 rpm. Further tests undertaken in fired engine dynamometer studies, on a 1.91 1-4 CVH engine, demonstrated total engine friction reductions of 6% at W.O.T. conditions. The reduced engine friction resulted in lowering BSFC at 850 rpm by 3 to 4%. Tests conducted by Powertrain Operations confirmed durability. II-25 thermoset was selected for production implementation on all new Ford engines starting from model year 1995.
Technical Paper

Spectrogram Analysis of Accelerometer-Based Spark Knock Detection Waveforms

1997-05-20
972020
Spark knock pressure oscillations can be detected by a cylinder pressure transducer or by an accelerometer mounted on the engine block. Accelerometer-based detection is lower cost but is affected by extraneous mechanical vibrations and the frequency response of the engine block and accelerometer. The knock oscillation frequency changes during the expansion stroke because the chamber geometry is changing due to the piston motion and the burned gases are cooling. Spectrogram analysis shows the time-dependent frequency content of the pressure and acceleration signals, revealing characteristic signatures of knock and mechanical vibrations. Illustrative spectrograms are presented which yield physical insight into accelerometer-based knock detection.
X