Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Deposit Formation of Flex Fuel Engines Operated on Ethanol and Gasoline Blends

2010-05-05
2010-01-1464
A test procedure was developed to assess the deposit-forming tendencies of gasoline/ethanol fuel blends, ranging from 0 % to 100 % ethanol (E0 to E100). The test engine was a Ford 1.8l - 4 cylinder -16 valve -natural aspirated flex fuel engine, which is used in various vehicle models, such as the European Focus and C-MAX. The test cycle, a realistic engine speed/torque profile, based on an urban driving pattern, provided good differentiation between different gasoline/ethanol fuel blends as well as between additized and non-additized fuel blends. With unadditized E85 critical deposits were found in the intake system, on the intake valves, in the combustion chamber and on the injector tips. Well known deposit control additives (DCA) used in gasoline such as PIBA (polyisobutyleneamine) and PEA (polyetheramine) were examined in E85 for deposit control effectiveness of intake valves, injectors and combustion chambers.
Journal Article

Real-Time Optimal Energy Management of Heavy Duty Hybrid Electric Vehicles

2013-04-08
2013-01-1748
The performance of energy flow management strategies is essential for the success of hybrid electric vehicles (HEVs), which are considered amongst the most promising solutions for improving fuel economy as well as reducing exhaust emissions. The heavy duty HEVs engaged in cycles characterized by start-stop configuration has attracted widely interests, especially in off-road applications. In this paper, a fuzzy equivalent consumption minimization strategy (F-ECMS) is proposed as an intelligent real-time energy management solution for heavy duty HEVs. The online optimization problem is formulated as minimizing a cost function, in terms of weighted fuel power and electrical power. A fuzzy rule-based approach is applied on the weight tuning within the cost function, with respect to the variations of the battery state-of-charge (SOC) and elapsed time.
Journal Article

Powertrain Architecture affects Driving Habits

2014-10-13
2014-01-2869
The impact of the number of cylinders on two downsized gasoline engines on driving habits in the same passenger-vehicle type was investigated. This was carried out with two similar vehicles, equipped with an in-line three cylinder (i3) and an in-line four cylinder (i4) engine, both having same power, torque and transient-response behaviour. Both engine types were mated to six-speed manual transmissions with same gear-ratios and dual-mass flywheel characteristics. The study was performed by letting a statistically significant number of subjects driving the same route and both vehicles consecutively. The relevant data during driving were recorded simultaneously from either vehicle integrated sensors (CAN), and secondary transducers.
Journal Article

Effects of LPG Fuel Formulations on Knock and Pre-Ignition Behavior of a DI SI Engine

2015-09-01
2015-01-1947
Due to their CO2 reduction potential and their high knock resistance gaseous fuels present a promising alternative for modern highly boosted spark ignition engines. Especially the direct injection of LPG reveals significant advantages. Previous studies have already shown the highest thermodynamic potential for the LPG direct injection concept and its advantages in comparison to external mixture formation systems. In the performed research study a comparison of different LPG fuels in direct injection mode shows that LPG fuels have better auto-ignition behavior than gasoline. A correlation between auto-ignition behavior and the calculated motor octane number could not be found. However, a significantly higher correlation of R2 = 0.88 - 0.99 for CR13 could be seen when using the methane number. One major challenge in order to implement the LPG direct injection concept is to ensure the liquid state of the fuel under all engine operating conditions.
Journal Article

Efficiency and Durability Predictions of High Performance Racing Transmissions

2016-06-15
2016-01-1852
Efficiency and durability are key areas of research and development in modern racing drivetrains. Stringent regulations necessitate the need for components capable of operating under highly loaded conditions whilst being efficient and reliable. Downsizing, increasing the power-to-weight ratio and modification of gear teeth geometry to reduce friction are some of the actions undertaken to achieve these objectives. These approaches can however result in reduced structural integrity and component durability. Achieving a balance between system reliability and optimal efficiency requires detailed integrated multidisciplinary analyses, with the consideration of system dynamics, contact mechanics/tribology and stress analysis/structural integrity. This paper presents an analytical model to predict quasi-static contact power losses in lubricated spur gear sets operating under the Elastohydrodynamic regime of lubrication.
Journal Article

Experimental Study on the Burning Rate of Methane and PRF95 Dual Fuels

2016-04-05
2016-01-0804
Natural gas as an alternative fuel offers the potential of clean combustion and emits relatively low CO2 emissions. The main constitute of natural gas is methane. Historically, the slow burning speed of methane has been a major concern for automotive applications. Literature on experimental methane-gasoline Dual Fuel (DF) studies on research engines showed that the DF strategy is improving methane combustion, leading to an enhanced initial establishment of burning speed even compared to that of gasoline. The mechanism of such an effect remains unclear. In the present study, pure methane (representing natural gas) and PRF95 (representing gasoline) were supplied to a constant volume combustion vessel to produce a DF air mixture. Methane was added to PRF95 in three different energy ratios 25%, 50% and 75%. Experiments have been conducted at equivalence ratios of 0.8, 1, 1.2, initial pressures of 2.5, 5 and 10 bar and a temperature of 373K.
Journal Article

Design and Optimisation of the Propulsion Control Strategy for a Pneumatic Hybrid City Bus

2016-04-05
2016-01-1175
A control strategy has been designed for a city bus equipped with a pneumatic hybrid propulsion system. The control system design is based on the precise management of energy flows during both energy storage and regeneration. Energy recovered from the braking process is stored in the form of compressed air that is redeployed for engine start and to supplement the engine air supply during vehicle acceleration. Operation modes are changed dynamically and the energy distribution is controlled to realize three principal functions: Stop-Start, Boost and Regenerative Braking. A forward facing simulation model facilitates an analysis of the vehicle dynamic performance, engine transient response, fuel economy and energy usage.
Journal Article

In-Situ Measurements of the Piston and Connecting Rod Dynamics Correlated with TEHL-Simulation Techniques

2017-09-04
2017-24-0157
High combustion pressure in combination with high pressure gradient, as they e.g. can be evoked by high efficient combustion systems and e.g. by alternative fuels, acts as broadband excitation force which stimulates natural vibrations of piston, connecting rod and crankshaft during engine operation. Starting from the combustion chamber the assembly of piston, connecting rod and crankshaft and the main bearings represent the system of internal vibration transfer. To generate exact input and validation values for simulation models of structural dynamic and elasto-hydrodynamic coupled multi-body systems, experimental investigations are done. These are carried out on a 1.5-l inline four cylinder Euro 6 Diesel engine. The modal behaviour of the system was examined in detail in simulation and test as a basis for the investigations. In an anechoic test bench airborne and structure-borne noises and combustion pressure are measured to identify the engine´s vibrational behaviour.
Technical Paper

Real-Time Sound and Vibration Modelling for Electric Motor

2021-08-31
2021-01-1081
The replacement of the ICE engine with an electric motor has led to a significant reduction in vibration and noise. The characteristics of the electric motor as part of the powertrain still need consideration from an NVH perspective, as there are still two highly tonal components generating noise to the cabin, albeit at higher frequencies. The radial electromagnetic force causes a structural vibration on the casing which changes with motor speed and can be used to indicate vehicle speed. The current excitation causes a primarily tangential force on the poles of the motor at a specific frequency, but both are narrow band and can cause annoyance. The traditional approach to predicting the sound radiation of electric motors is usually based on finite element analysis (FEA). While this method has the capability to estimate the time response, it is computationally too demanding and does not allow for early investigations at systems level.
Journal Article

Crankcase Sampling of PM from a Fired and Motored Compression Ignition Engine

2011-09-11
2011-24-0209
Crankcase emissions are a complex mixture of combustion products and aerosol generated from lubrication oil. The crankcase emissions contribute substantially to the total particulate matter (PM) emitted from an engine. Environment legislation demands that either the combustion and crankcase emissions are combined to give a total measurement, or the crankcase gases are re-circulated back into the engine. There is a lack of understanding regarding the physical processes that generate crankcase aerosols, with a paucity of information on the size/mass concentrations of particles present in the crankcase. In this study the particulate matter crankcase emissions were measured from a fired and motored 4-cylinder compression ignition engine at a range of speeds and crankcase locations.
Journal Article

Insights into Cold-Start DISI Combustion in an Optical Engine Operating at −7°C

2013-04-08
2013-01-1309
Particulate Matter (PM) emissions reduction is an imminent challenge for Direct Injection Spark Ignition (DISI) engine designers due to the introduction of Particulate Number (PN) standards in the proposed Euro 6 emissions legislation aimed at delivering the next phase of air quality improvements. An understanding of how the formation of combustion-derived nanoparticulates in engines is affected by the engine operating temperature is important for air quality improvement and will influence future engine design and control strategies. This investigation has examined the effect on combustion and PM formation when reducing the engine operating temperature to -7°C. A DISI single-cylinder optical research engine was modified to simulate a range of operating temperatures down to the proposed -7°C.
Journal Article

Large Eddy Simulation of Premixed Combustion in Spark Ignited Engines Using a Dynamic Flame Surface Density Model

2013-04-08
2013-01-1086
In this work, cyclic combustion simulations of a spark ignition engine were performed using the Large Eddy Simulation techniques. The KIVA-4 RANS code was modified to incorporate the LES capability. The flame surface density approach was implemented to model the combustion process. Ignition and flame kernel models were also developed to simulate the early stage of flame propagation. A dynamic procedure was formulated where all model coefficients were locally evaluated using the resolved and test filtered flow properties during the fully developed phase of combustion. A test filtering technique was adopted to use in wall bounded systems. The developed methodology was then applied to simulate the combustion and associated unsteady effects in a spark ignition engine. The implementation was validated using the experimental data taken from the same engine.
Journal Article

Analysis of Transient Operation of Turbo Charged Engines

2010-09-28
2010-32-0005
Transient operation of turbocharged engines is mostly optimised in the light of quickness of response and the provision of the demanded torque. The time from demanded boosted torque to delivered torque above the maximum torque provided by the natural aspirated torque value is known as turbo-lag. This could reveal as an issue for small gasoline turbo-charged engines with a displacement of 1.0ltr or lower. These small types of engines are moving more and more in the focus for automobile applications. To provide the required power and torque, gasoline direct injection and turbo-charging are helpful in order to enable a reduction of fuel consumption by both de-throttled operation over a large area of operation and improved thermal efficiency among others achieved by maintaining an appropriate compression ratio.
Technical Paper

Improving Diesel Sound Quality on Engine Level and Vehicle Level - A Holistic Approach

2007-05-15
2007-01-2372
Diesel impulsiveness (so called Diesel knocking) present in the cabin of diesel vehicles is perceived as unpleasant because of its impulsive time structure. JD Power data clearly show the customers preference of vehicles with little Diesel knocking over those with severe knocking. Corresponding objective descriptors that reflect the customers' perception are introduced. The occurrence of such noise patterns is influenced by the combustion process itself as well as by all excited mechanical components within the power train. Further the transfer characteristics of the engine structure and various vehicle noise paths do contribute to a poor Diesel Sound Quality. It is essential that all these factors have to be considered in combination. This paper provides an overview about suitable methods and technologies, including Binaural Transfer Path Analysis and Synthesis. The potential of the approach is demonstrated by an example.
Technical Paper

Performance and Exhaust Emission Evaluation of a Small Diesel Engine Fuelled with Coconut Oil Methyl Esters

1998-02-23
981156
Renewable sources of energy need to be developed to fulfill future energy demands in areas such as the Maldives where traditional sources of raw materials are limited or non-existent. This paper explores the use of an alternative fuel derived from coconut oil that can be produced in the Maldives and can be used in place of diesel fuel. The main advantage of this particular fuel is that it is a highly saturated oil with a calorific value close to standard diesel fuel. The viscosity of the crude coconut oil is much higher than standard diesel fuel. To reduce the viscosity and to make the oil more suitable for conventional diesel engines methyl esters were produced using the transesterification process (1). The engine performed well on the coconut oil methyl esters although there was a small reduction in power consistent with the lower calorific value of the alternative fuel. Comparative performance data together with the emission levels for the two fuels are presented.
Technical Paper

Thermal Spraying of Nano-Crystalline Coatings for Al-Cylinder Bores

2008-04-14
2008-01-1050
The fuel consumption of modern passenger cars can be reduced by utilizing lightweight construction as well as by decreasing internal friction losses in the drive train. Modern engine blocks are partly made of cast iron or alumimum material whereas for the later hypo-eutectic AlSi-alloys dominate. Due to the low hardness, surfaces made of these alloys cannot be used as a friction partner for the piston rings. Cast iron liners are often inserted into the engine block to provide a wear-resistant surface for the piston rings. This work describes how cast iron liners can be replaced by thin, nanocrystalline iron based coatings in order to decrease friction losses as well as reduce the engine weight. The coatings were applied by thermal spraying with the Plasma Transferred Wire Arc internal diameter coating system.
Technical Paper

Comparison between Unthrottled, Single and Two-valve Induction Strategies Utilising Direct Gasoline Injection: Emissions, Heat-release and Fuel Consumption Analysis

2008-06-23
2008-01-1626
For a spark-ignition engine, the parasitic loss suffered as a result of conventional throttling has long been recognised as a major reason for poor part-load fuel efficiency. While lean, stratified charge, operation addresses this issue, exhaust gas aftertreatment is more challenging compared with homogeneous operation and three-way catalyst after-treatment. This paper adopts a different approach: homogeneous charge direct injection (DI) operation with variable valve actuations which reduce throttling losses. In particular, low-lift and early inlet valve closing (EIVC) strategies are investigated. Results from a thermodynamic single cylinder engine are presented that quantify the effect of two low-lift camshafts and one standard high-lift camshaft operating EIVC strategies at four engine running conditions; both, two- and single-inlet valve operation were investigated. Tests were conducted for both port and DI fuelling, under stoichiometric conditions.
Technical Paper

Modeling and Control Design of a SOFC-IC Engine Hybrid System

2008-04-14
2008-01-0082
This paper presents a control system design strategy for a novel fuel cell - internal combustion engine hybrid power system. Dynamic control oriented models of the system components are developed. The transient behavior of the system components is investigated in order to determine control parameters and set-points. The analysis presented here is the first step towards development of a controller for this complex system. The results indicate various possibilities for control design and development. A control strategy is discussed to achieve system performance optimization.
Technical Paper

BSFC Investigation Using Variable Valve Timing in a Heavy Duty Diesel Engine

2009-04-20
2009-01-1525
Variable valve actuation in heavy duty diesel engines is not well documented, because of diesel engine feature, such as, unthrottled air handling, which gives little room to improve pumping loss; a very high compression ratio, which makes the clearance between the piston and valve small at the top dead center. In order to avoid strike the piston while maximizing the valve movement scope, different strategies are adopted in this paper: (1) While exhaust valve closing is fixed, exhaust valve opening is changed; (2) While exhaust valve closing is fixed, late exhaust valve opening: (3) While inlet valve opening is fixed, inlet valve closing is changed; (4) Delayed Inlet valve and exhaust valve openings and closings; (5) Changing exhaust valve timing; (6) changing inlet valve timing; (7) Changing both inlet and exhaust timing, will be used.
Technical Paper

Numerical and Experimental Analysis of Manual Transmissions - Gear Rattle

2009-04-20
2009-01-0328
Manual transmission gear rattle is the result of repetitive impacts of gear meshing teeth within their backlash. This phenomenon can occur under various loaded or lightly loaded conditions. It fundamentally differs from other transient NVH phenomena, such as clonk or thud, which are due to impulsive actions [1]. However, they all have their lowest common denominator in the action of contact/impact forces through lubricated contacts. Various forms of rattle have been cited, owing to the mechanism of manifestation and operating conditions [2, 3 and 4], among which drive rattle, creep rattle and over-run rattle can be found. In this work, a transmission model for creep rattle conditions has been developed taking into account the lubricated impacts of the gear teeth pairs during a meshing cycle and the friction between the contacting teeth flanks.
X