Refine Your Search

Topic

Author

Search Results

Journal Article

Real-time Sensing of Particulate Matter in a Vehicle Exhaust System

2017-03-28
2017-01-1639
Onboard diagnostic regulations require performance monitoring of diesel particulate filters used in vehicle aftertreatment systems. Delphi has developed a particulate matter (PM) sensor to perform this function. The objective of this sensor is to monitor the soot (PM) concentration in the exhaust downstream of the diesel particulate filter which provides a means to calculate filter efficiency. The particulate matter sensor monitors the deposition of soot on its internal sensing element by measuring the resistance of the deposit. Correlations are established between the soot resistance and soot mass deposited on the sensing element. Currently, the sensor provides the time interval between sensor regeneration cycles, which, with the knowledge of the exhaust gas flow parameters, is correlated to the average soot concentration.
Technical Paper

Thermally-Induced Microstructural Changes in a Three-Way Automotive Catalyst

1997-10-01
972905
The use of advanced electron microscopy techniques to characterize both the bulk and near-atomic level microstructural evolution of catalyst materials during different dynamometer/vehicle aging cycles is an integral part of understanding catalyst deactivation. The study described here was undertaken to evaluate thermally-induced microstructural changes which caused the progressive loss of catalyst performance in a three-way automotive catalyst. Several different catalyst processing variables, for example changing the washcoat ceria content, were also evaluated as a function of aging cycle and thermal history. A number of thermally-induced microstructural changes were identified using high resolution electron microscopy techniques that contributed to the deactivation of the catalyst, including sintering of all washcoat constituents, γ-alumina transforming to α-, β-, and δ-alumina, precious metal redistribution, and constituent encapsulation.
Technical Paper

CFD-Aided Development of Spray for an Outwardly Opening Direct Injection Gasoline Injector

1998-02-23
980493
A high pressure outwardly opening fuel injector has been developed to produce sprays that meet the stringent requirements of gasoline direct injection (DI) combustion systems. Predictions of spray characteristics have been made using KIVA-3 in conjunction with Star-CD injector flow modeling. After some modeling iterations, the nozzle design has been optimized for the required flow, injector performance, and spray characteristics. The hardware test results of flow and spray have confirmed the numerical modeling accuracy and the spray quality. The spray's average Sauter mean diameter (SMD) is less than 15 microns at 30 mm distance from the nozzle. The DV90, defined as the drop diameter such that 90% of the total liquid volume is in drops of smaller diameter, is less than 40 microns. The maximum penetration is about 70 mm into air at atmospheric pressure. An initial spray slug is not created due to the absence of a sac volume.
Technical Paper

Performance Evaluation of Door & Seat Side-Impact Airbags for Passenger Van and Sport-Utility Vehicles

1998-02-23
980912
Side impact accounts for a significant source of societal harm, injury and death. To address this issue, Europe and US have introduced legislation to be met for the new vehicle certification. In an effort to meet these regulations and the market demand for safety, Automotive manufacturers have significantly improved vehicle side structure integrity and introduced side impact airbags are for added protection. Today, passenger vans, light truck and sport-utility type vehicles are all popular consumer choices in the US. These vehicles differ significantly from passenger cars in many respects and as such need special design considerations for side airbags. Here, MADYMO-3D model of a generic passenger van / Sport-Utility type vehicle is created and correlated to FMVSS-214 side impact crash test. This model is used to evaluate both door and seat mounted side airbag designs in different orientations at standard test impact condition and at a higher speed.
Technical Paper

Palladium/Rhodium Dual-Catalyst LEV 2 and Bin 4 Close-Coupled Emission Solutions

2007-04-16
2007-01-1263
Dual-monolith catalyst systems containing Pd/Rh three-way catalysts (TWCs) provide effective emission solutions for LEV2/Bin 5 and Bin 4 close-coupled applications at low PGM loadings. These systems combine washcoat technology and PGM distribution for front and rear catalysts resulting in optimal hydrocarbon and NOx light-off and transient NOx control. The dual-catalyst [Pd/Rh + Pd/Rh] systems are characterized as a function of Pd-Rh content, PGM location, and catalyst technology for 4-cyl [close-coupled + underfloor] systems and 6-cyl close-coupled applications. The current Pd/Rh dual-catalyst converters significantly reduce NOx emissions compared to earlier [Pd + Pt/Rh] or [Pd + Pd/Rh] LEV/ULEV systems by utilizing uniform Rh distribution and new OSC materials. These new design strategies particularly impact NOx performance, especially during transient A/F excursions.
Technical Paper

Emission Formation Mechanisms in a Two-Stroke Direct-Injection Engine

1998-10-19
982697
Engine tests were conducted to study the effect of fuel-air mixture preparation on the combustion and emission performance of a two-stroke direct-injection engine. The in-cylinder mixture distribution was altered by changing the injection system, injection timing, and by substituting the air in an air-assisted injector with nitrogen. Two injection systems which produce significantly different mixtures were investigated; an air-assisted injector with a highly atomized spray, and a single-fluid high pressure-swirl injector with a dense penetrating spray. The engine was operated at overall A/F ratios of 30:1, where stratification was necessary to ensure stable combustion; and at 20:1 and 15:1 where it was possible to operate in a nearly homogeneous mode. Moderate engine speeds and loads were investigated. The effects of the burning-zone A/F ratio were isolated by using nitrogen as the working fluid in the air-assist injector.
Technical Paper

A Model-Based Brake Pressure Estimation Strategy for Traction Control System

2001-03-05
2001-01-0595
This paper presents a brake pressure estimation algorithm for Delphi Traction Control Systems (TCS). A control oriented lumped parameter model of a brake control system is developed using Matlab/Simulink. The model is derived based on a typical brake system and is generic to other types of brake control hardware systems. For application purposes, the model is simplified to capture the dominant dynamic brake pressure response. Vehicle experimental data collected under various scenarios are used to validate the algorithm. Simulation results show that the algorithm gives accurate pressure estimation. In addition, the calibration procedure is greatly simplified
Technical Paper

Reliability of Resonant Micromachined Sensors and Actuators

2001-03-05
2001-01-0618
There are an increasing number of applications for resonant micromachines. Accelerometers, angular rate sensors, voltage controlled oscillators, pressure and chemical sensors have been demonstrated using this technology. Several of these devices are employed in vehicles. Vibrating devices have been made from silicon, quartz, GaAs, nickel and aluminum. Resonant microsystems are in constant motion and so present new challenges in the area of reliability for vehicular applications. The impact of temperature extremes, cyclic fatigue, stiction, thermal and mechanical shock on resonant device performance is covered.
Technical Paper

Dynamic EGR Estimation for Production Engine Control

2001-03-05
2001-01-0553
A dynamic EGR State Estimator (ESE) intended for production engine management systems (EMS) implementation is presented. It better describes the development of external exhaust gas recirculation (EGR) concentration at the engine intake ports during EGR transients than traditional models. The dynamics of EGR concentration time and spatial development in the intake manifold are described as a perfect mixing model in the intake manifold plenum volume and non-mixing plug flow in the intake manifold runners. The time scale of EGR transients precludes the use of traditional EGR measurement techniques for model verification. Instead a wide range air fuel (WRAF) sensor is used. Results are shown for a large variation in operating conditions and compared to the performance of a traditional model.
Technical Paper

Comfort and Usability of the Seat Belts

2001-03-05
2001-01-0051
Seat belts are the primary occupant-protection devices for vehicle crashes. Field statistics show that proper usage of seat belts substantially contributes to decreases in the fatality rate and injury level. To collect first-hand information regarding seat belt comfort and usability, a questionnaire survey was conducted. The most significant problems were found as belt trapping in the door, awkward negotiating with clothes, belt twisting, belt locking up, and difficulty to locate the buckle. The survey results indicated that drivers who are over 40 years old have more complaints than younger drivers. When the driver's age increases to 55 and above, belt pulling force and inappropriate and loose fitting of the belt on the body become major issues. Female drivers have more complaints than male drivers. Short statured drivers need both hands to pull and guide the retracting of the belt.
Technical Paper

US and UK Field Rollover Characteristics

2001-03-05
2001-01-0167
In this study, US and UK accident data were analyzed to identify parameters that may influence rollover propensity to analyze driver injury rate. The US data was obtained from the weighted National Automotive Sampling System (NASS-CDS), calendar years 1992 to 1996. The UK pre-roll data was obtained from the national STATS 19 database for 1996, while the injury information was collected from the Co-operative Crash Injury Study (CCIS) database. In the US and UK databases, rollovers accounted for about 10% of all crashes with known crash directions. In the US and UK databases, most rollovers occurred when the vehicle was either going straight ahead or turning. The propensity for a rollover was more than 3 times higher when going around a bend than a non-rollover. In the UK, 74% of rollovers occurred on clear days with no high winds and 14% on rainy days with no high winds. In the US, 83% of rollovers took place in non-adverse weather conditions and 10% with rain.
Technical Paper

Near and Far-Side Adult Front Passenger Kinematics in a Vehicle Rollover

2001-03-05
2001-01-0176
In this study, U.S. accident data was analyzed to determine interior contacts and injuries for front-seated occupants in rollovers. The injury distribution for belted and unbelted, non-ejected drivers and right front passengers (RFP) was assessed for single-event accidents where the leading side of the vehicle rollover was either on the driver or passenger door. Drivers in a roll-left and RFP in roll-right rollovers were defined as near-side occupants, while drivers in roll-right and RFP in roll-left rollovers were defined as far-side occupants. Serious injuries (AIS 3+) were most common to the head and thorax for both the near and far-side occupants. However, serious spinal injuries were more frequent for the far-side occupants, where the source was most often coded as roof, windshield and interior.
Technical Paper

Comparative Study of Hybrid Powertrain Strategies

2001-08-20
2001-01-2501
Hybrid electric vehicles have the potential to reduce air pollution and improve fuel economy without sacrificing the present conveniences of long range and available infrastructure that conventional vehicles offer. Hybrid vehicles are generally classified as series or parallel hybrids. A series hybrid vehicle is essentially an electric vehicle with an on-board source of power for charging the batteries. In a parallel hybrid vehicle, the engine and the electric motor can be used to drive the vehicle simultaneously. There are various possible configurations of parallel hybrid vehicles depending on the role of the electric motor/generator and the engine. In this paper, a comparative study of the drivetrains of five different hybrid vehicles is presented. The underlying design architectures are examined, with analysis as to the tradeoffs and advantages represented in these architectures.
Technical Paper

Instrument Panel Skin Manufactured with 100% Recycled TPO Material

2002-03-04
2002-01-1262
Desiring to push thermoplastic poly-olefin (TPO) technology to its fullest limits and to confirm our position as the leader in the manufacturing of environmentally friendly TPO instrument panels, we have designed a process to manufacture 100% recycled instrument panel skins. This closed-loop process begins with extruding 100% recycled TPO flake into sheet stock to be painted and vacuum formed. The painted sheet is vacuum formed and the offal is ground into regrind flake, ready to be extruded again, thus completing the closed-loop process. This paper will describe a 100% closed loop recycling process for TPO instrument panels, discuss the intense validation process for recycled material and prove the robustness and durability of this interior solution.
Technical Paper

Solid Oxide Fuel Cell Auxiliary Power Unit - A Development Update

2002-03-04
2002-01-0411
Delphi Automotive Systems and BMW are jointly developing Solid Oxide Fuel Cell (SOFC) technology for application in the transportation industry primarily as an on-board Auxiliary Power Unit (APU). In the first application of this joint program, the APU will be used to power an electric air conditioning system without the need for operating the vehicle engine. The SOFC based APU technology has the potential to provide a paradigm shift in the supply of electric power for passenger cars. Furthermore, by supplementing the conventional fuel with reformate in the internal combustion engine, extremely low emissions and high system efficiencies are possible. This is consistent with the increasing power demands in automobiles in the new era of more comfort and safety along with environmental friendliness. Delphi Automotive Systems and BMW were successful in demonstrating an Auxiliary Power Unit (APU) based on Solid Oxide Fuel Cell (SOFC) technology in February, 2001.
Technical Paper

Implications of 3-D Internal Flow Simulation on the Design of Inward-Opening Pressure-Swirl Injectors

2002-10-21
2002-01-2698
A parametric study on the effects of critical injector design parameters of inwardly-opening pressure-swirl injectors was carried out using 3-D internal flow simulations. The pressure variation and the integrated momentum flux across the injector, as well as the flow distributions and turbulence structure at the nozzle exit were analyzed. The critical flow effects on the injector design identified are the swirler efficiency, discharge coefficient, and turbulence breakup effects on the spray structure. The study shows that as a unique class of injectors, pressure-swirl injectors is complicated in fluid mechanics and not sufficiently characterized or optimized. The swirler efficiency is characterized in terms of the trade-off relationship between the swirl-to-axial momentum-flux ratio and pressure drop across the swirler. The results show that swirl number is inversely proportional to discharge coefficient, and that hole diameter and swirler height is the most dominant parameters.
Technical Paper

Environmentally Friendly Car Wiring System

2002-03-04
2002-01-0595
Legal requirements and responsibility for the environment require improved recyclability of car components. This can be achieved by a reduction in the variety of materials used, which can be separated after use. This is being demonstrated for wiring harnesses using a new hook and loop based fastening system. Easier assembly and disassembly, elimination of fixation holes in the car body, and improved serviceability can lead to considerable cost reductions. Field experience on test cars will be available at a later date.
Technical Paper

Impact of Alkali Metals on the Performance and Mechanical Properties of NOx Adsorber Catalysts

2002-03-04
2002-01-0734
Performance of two types of NOx adsorber catalysts, one based on Ba and the other based on Ba with alkali metals, was compared fresh and after thermal aging. Incorporation of sodium(Na), potassium(K) and cesium(Cs) into NOx adsorber washcoat containing barium significantly increases the NOx conversions in the temperature range of 350-600°C over that of the alkali metal free NOx adsorber catalysts. NOx performance benefit and HC performance penalty were observed on both engine dynamometer and vehicle tests for the “Ba+alkali metals” NOx adsorber catalysts. “Ba+alkali metals” NOx adsorber catalysts also demonstrate superior sulfur resistance with better NOx performance after repeated sulfur poisonings and desulfations over the “Ba based” NOx adsorber catalysts.
Technical Paper

Influence of Active Chassis Systems on Vehicle Propensity to Maneuver-Induced Rollovers

2002-03-04
2002-01-0967
The purpose of this paper is to evaluate through simulations the effects of active chassis systems on vehicle propensity to rollover caused by aggressive handling maneuvers. A 16 degree-of-freedom computer model of a full vehicle is used for this purpose. It includes models of active chassis systems and the associated control algorithms, and allows for simulation of vehicle dynamic behavior under large roll angles. The controllable chassis systems considered in this investigation are active rear steer, brake based vehicle stability enhancement system and active anti-roll bar. The maneuvers used in simulation are the double lane change and the fishhook maneuvers with increasing steering amplitudes. The vehicle represents a midsize SUV with a marginal static stability factor of 1.09 and aggressive tires. The results of simulations demonstrate that the uncontrolled vehicle rolls over in both maneuvers when the steering angle is sufficiently large.
Technical Paper

Emission Characteristics of a Dual-Injector Diesel Fuel Injection System

1996-02-01
960839
Environmentally speaking, simultaneous reduction of smoke and NOx with minimal effects on the fuel economy has been an ideal goal for diesel engine designers. In the past decade several in-cylinder approaches were proposed with various degrees of success in operation. Here, we consider one promissing technique called as double (split) or staged injection. A single-cylinder compression-ignition two-stroke research engine with optically-accessible head, mounted on a high-speed CFR engine crankcase, was used to investigate the combustion and emission characteristics of a dual-injector injection system. The injection system produces two separate independently-controlled sprays with a good degree of adjustability with regard to their fuel quantities and injection timings. Results are presented to show the effects of the varied injection system characteristics on the combustion and exhaust emissions ( NOx and smoke).
X