Refine Your Search

Topic

Author

Search Results

Video

OBD Challenges for Plug In Hybrid Electric Vehicles

2012-01-30
Plug-In Hybrid and Extended Range Electric Vehicle's have quickly become the focus of many OEM's and suppliers. Existing regulations and test procedures did not anticipate this rapid adoption of this new technology, resulting in many product development challenges. The lack of clear requirements is further complicated by CARBs consideration of CO2 inclusion in their next light duty OBD regulation. This presentation provides an overview of the regulatory requirements for OBD systems on hybrid vehicles that intend to certify in California. Near term challenges for EREV?s and PHEV?s are discussed, including concerns with the existing denominator and warm-up cycle calculations. Some proposals are made to address these concerns. Presenter Andrew Zettel, General Motors Company
Video

Monitoring NO2 Production of a Diesel Oxidation Catalyst

2012-01-24
A combination of laboratory reactor measurements and vehicle FTP testing has been combined to demonstrate a method for diagnosing the formation of NO2 from a diesel oxidation catalyst (DOC). Using small cores from a production DOC and simulated diesel exhaust, the laboratory reactor experiments are used to support a model for DOC chemical reaction kinetics. The model we propose shows that the ability to produce NO2 is chemically linked to the ability of the catalyst to oxidize hydrocarbon (HC). For thermally damaged DOCs, loss of the HC oxidation function is simultaneous with loss of the NO2 production function. Since HC oxidation is the source of heat generated in the DOC under regeneration conditions, we conclude that a diagnostic of the DOC exotherm is able to detect the failure of the DOC to produce NO2. Vehicle emissions data from a 6.6 L Duramax HD pick-up with DOC of various levels of thermal degradation is provided to support the diagnostic concept.
Journal Article

Self-Pierce Riveting of Magnesium to Aluminum Alloys

2011-04-12
2011-01-0074
Magnesium and aluminum alloys offer lightweighting opportunities in automotive applications. Joining of dissimilar materials, however, generally requires methods that do not involve fusion. This paper explores the use of self-pierce riveting (SPR) to join magnesium to aluminum alloys for structural and closure applications. The preliminary results indicate that SPR is a viable option for joining aluminum extrusions to magnesium die castings, as well as stamped sheet aluminum to quick-plastic-formed (QPF) sheet magnesium.
Journal Article

Structural Evaluation of an Experimental Aluminum/Magnesium Decklid

2011-04-12
2011-01-0075
Experimental decklids for the Cadillac STS sedan were made with Al AA5083 sheet outer panels and Mg AZ31B sheet inner panels using regular-production forming processes and hardware. Joining and coating processes were developed to accommodate the unique properties of Mg. Assembled decklids were evaluated for dimensional accuracy, slam durability, and impact response. The assemblies performed very well in these tests. Explicit and implicit finite element simulations of decklids were conducted, and showed that the Al/Mg decklids have good stiffness and strength characteristics. These results suggest the feasibility of using Mg sheet closure panels from a structural perspective.
Journal Article

Development of the Combustion System for General Motors' High-Efficiency Range Extender Ecotec Small Gas Engine

2015-04-14
2015-01-1272
General Motors has developed an all-new Ecotec 1.5 L range extender engine for use in the 2016 next generation Voltec propulsion system. This engine is part of a new Ecotec family of small displacement gasoline engines introduced in the 2015 model year. Major enhancements over the range extender engine in the current generation Voltec propulsion system include the adoption of direct injection (DI), cooled external exhaust gas recirculation (EGR), and a high 12.5:1 geometric compression ratio (CR). Additional enhancements include the adoption of high-authority phasers on both the intake and exhaust camshafts, and an integrated exhaust manifold (IEM). The combination of DI with cooled EGR has enabled significant thermal efficiency gains over the 1.4 L range extender engine in the current generation Voltec propulsion system at high engine loads.
Journal Article

A Comparison of Spray-Guided Stratified-Charge Combustion Performance with Outwardly-Opening Piezo and Multi-Hole Solenoid Injectors

2011-04-12
2011-01-1217
This investigation was aimed at measuring the relative performance of two spray-guided, single-cylinder, spark-ignited direct-injected (SIDI) engine combustion system designs. The first utilizes an outwardly-opening poppet, piezo-actuated injector, and the second a conventional, solenoid operated, inwardly-opening multi-hole injector. The single-cylinder engine tests were limited to steady state, warmed-up conditions. The comparison showed that these two spray-guided combustion systems with two very different sprays had surprisingly close results and only differed in some details. Combustion stability and smoke emissions of the systems are comparable to each other over most of the load range. Over a simulated Federal Test Procedure (FTP) cycle, the multi-hole system had 15% lower hydrocarbon and 18% lower carbon monoxide emissions.
Journal Article

Fatigue Behavior and Life Prediction for Aluminum Castings in the Absence of Casting Flaws

2011-04-12
2011-01-0193
Cast aluminum alloys are increasingly used in cyclically loaded automotive structural applications for light weight and fuel economy. The fatigue resistance of aluminum castings strongly depends upon the presence of casting flaws and characteristics of microstructural constituents. The existence of casting flaws significantly reduces fatigue crack initiation life. In the absence of casting flaws, however, crack initiation occurs at the fatigue-sensitive microstructural constituents. Cracking and debonding of large silicon (Si) and Fe-rich intermetallic particles and crystallographic shearing from persistent slip bands in the aluminum matrix play an important role in crack initiation. This paper presents fatigue life models for aluminum castings free of casting flaws, which complement the fatigue life models for aluminum castings containing casting flaws published in [1].
Journal Article

Virtual Manufacturability Analyzer for Casting Components

2011-04-12
2011-01-0528
There is an increasing demand in automated manufacturability analysis of metal castings at the initial stages of their design. This paper presents a system developed for virtual manufacturability analysis of casting components. The system can be used by a casting designer to evaluate manufacturability of a part designed for various manufacture processes including casting, heat treatment, and machining. The system uses computational geometrics and geometric reasoning to extract manufacturing features and geometry characteristics from a part CAD model. It uses an expert system and a design database consisting of metal casting, heat treatment and machining process knowledge and rules to present manufacturability analysis results and advice to the designer. Application of the system is demonstrated for the manufacturability assessment of automotive cast aluminum components.
Journal Article

Effects on Surface Roughness and Friction on Aluminum Sheet under Plain Strain Cyclic Bending and Tension

2011-04-12
2011-01-0535
During sheet metal forming, the friction and surface roughness change as the sheet slides, bends and stretches against the tools. This study assessed evolution of friction and surface roughness changes on aluminum sheet with two surface finish conditions, mill finish (MF) and electron discharge texture (EDT), in both the longitudinal and the transverse rolling directions of the sheet. The sheets were tested using a three pin Draw Bead Simulator (DBS). Surface roughness of the sheet evolved as a result of bending at the first shoulder, reverse bending at the middle pin, bending at the second shoulder and unbending at the exit. Stretching conditions and sheet-pin contact were also varied to see the impact on surface roughness. In general, the largest surface roughness change for the transverse direction was observed at the convex side of the exit shoulder pin and on the convex side of the first shoulder for the longitudinal direction.
Journal Article

The Effect of Surface Finish on Aluminum Sheet Friction Behavior

2011-04-12
2011-01-0534
Aluminum sheet is commercially available in three surface finishes, mill finish (MF), electric discharge texture (EDT), and dull finish (DF). This surface finish impacts the friction behavior during sheet metal forming. A study was done to compare ten commercially available sheet samples from several suppliers. The friction behavior was characterized in the longitudinal and transverse directions using a Draw Bead Simulator (DBS) test, resulting in a coefficient of friction (COF) value for each material. Characterization of the friction behavior in each direction provides useful data for formability analysis. To quantitatively characterize the surface finish, three-dimensional MicroTexture measurements were done with a WYKO NT8000 instrument. In general, the MF samples have the smoothest surface, with Sa values of 0.20-0.30 μm and the lowest COF values. The EDT samples have the roughest surface, with Sa values of 0.60-1.00 μm, and the highest COF values.
Journal Article

A Demonstration of Local Heat Treatment for the Preform Annealing Process

2011-04-12
2011-01-0538
The preform annealing process is a two-stage stamping method for shaping non age-hardenable (i.e. 5000 series) aluminum sheet panels in which the panel is heat treated in between the two steps to improve overall formability of the material. The intermediate annealing heat treatment eliminates the cold work accumulated in the material during the first draw. The process enables the ability to form more complex parts than a conventional aluminum stamping process. A demonstration of local annealing for this process was conducted to form a one-piece aluminum liftgate inner panel for a large sport utility vehicle using the steel product geometry without design concessions. In prior work, this process was demonstrated by placing the entire panel in a convection oven for several minutes to completely anneal the cold work.
Journal Article

Modeling of Residual Stresses in Quenched Cast Aluminum Components

2011-04-12
2011-01-0539
Cast aluminum alloys are normally quenched after solution treatment or solidification process to improve aging responses. Rapid quenching can lead to high residual stress and severe distortion which significantly affects dimension stability, functionality and particularly performance of the product. To simulate residual stress and distortion induced during quenching, a finite element based approach was developed by coupling an iterative zone-based transient heat transfer algorithm with material thermo-viscoplastic constitutive model. With the integrated models, the numeric predictions of residual stresses and distortion in the quenched aluminum castings are in a good agreement with experimental measurements.
Journal Article

Formability Analysis Predictions for Preform Annealing of Aluminum Sheet

2011-04-12
2011-01-0533
It is important to understand the accuracy level of the formability analysis for any new process so that correct predictions can be made in product and die design. This report focuses on the formability analysis methodology developed for the preform anneal process. In this process, the aluminum panel is partially formed, annealed to eliminate the cold work from the first step, and then formed to the final shape using the same die. This process has the ability to form more complex parts than conventional aluminum stamping, and has been demonstrated on a complex one-piece door inner and a complex one-piece liftgate inner with AA5182-O3. Both panels only required slight design modifications to the original steel product geometry. This report focuses on the formability analysis correlation with physical panels for the liftgate inner, considering both full panel anneal in a convection oven and local annealing of critical areas.
Journal Article

Investigation of the Load Limits and Emissions of a Naturally-Aspirated Direct-Injection Diesel Engine

2012-04-16
2012-01-0686
Cost and robustness are key factors in the design of diesel engines for low power density applications. Although compression ignition engines can produce very high power density output with turbocharging, naturally aspirated (NA) engines have advantages in terms of reduced cost and avoidance of system complexity. This work explores the use of direct injection (DI) and exhaust gas recirculation (EGR) in NA engines using experimental data from a single-cylinder research diesel engine. The engine was operated with a fixed atmospheric intake manifold pressure over a map of speed, air-to-fuel ratio, EGR, fuel injection pressure and injection timing. Conventional gaseous engine-out emissions were measured along with high speed cylinder pressure data to show the load limits and resulting emissions of the NA-DI engine studied. Well known reductions in NOX with increasing levels of EGR were confirmed with a corresponding loss in peak power output.
Journal Article

Gasoline DICI Engine Operation in the LTC Regime Using Triple- Pulse Injection

2012-04-16
2012-01-1131
An investigation of high speed direct injection (DI) compression ignition (CI) engine combustion fueled with gasoline injected using a triple-pulse strategy in the low temperature combustion (LTC) regime is presented. This work aims to extend the operation ranges for a light-duty diesel engine, operating on gasoline, that have been identified in previous work via extended controllability of the injection process. The single-cylinder engine (SCE) was operated at full load (16 bar IMEP, 2500 rev/min) and computational simulations of the in-cylinder processes were performed using a multi-dimensional CFD code, KIVA-ERC-Chemkin, that features improved sub-models and the Chemkin library. The oxidation chemistry of the fuel was calculated using a reduced mechanism for primary reference fuel combustion chosen to match ignition characteristics of the gasoline fuel used for the SCE experiments.
Journal Article

Response Surface Generation for Kinematics and Injury Prediction in Pedestrian Impact Simulations

2013-04-08
2013-01-0216
This study concerns the generation of response surfaces for kinematics and injury prediction in pedestrian impact simulations using human body model. A 1000-case DOE (Design of Experiments) study with a Latin Hypercube sampling scheme is conducted using a finite element pedestrian human body model and a simplified parametric vehicle front-end model. The Kriging method is taken as the approach to construct global approximations to system behavior based on results calculated at various points in the design space. Using the response surface models, human lower limb kinematics and injuries, including impact posture, lateral bending angle, ligament elongation and bone fractures, can be quickly assessed when either the structural dimensions or the structural behavior of the vehicle front-end design change. This will aid in vehicle front-end design to enhance protection of pedestrian lower limbs.
Journal Article

Effect of Temperature and Aeration on Fluid-Elastomer Compatibility

2013-04-08
2013-01-0652
To investigate the effect of aeration on fluid-elastomer compatibility, 4 types of elastomers were aged in three gear lubes. The four types of elastomers include a production fluorinated rubber (FKM) and production hydrogenated nitrile rubber (HNBR) mixed by the part fabricator, a standard low temperature flexible fluorinated rubber (FKM, ES-4) and a standard ethylene-acrylic copolymer (AEM, ES-7) mixed by SAE J2643 approved rubber mixer. The three gear lubes are Fluid a, Fluid b and Fluid c, where Fluid b is a modified Fluid with additional friction modifier, and Fluid c is friction modified chemistry from a different additive supplier. The aeration effect tests were performed at 125°C for 504 hours. The aerated fluid aging test was performed by introducing air into fluid aging tubes as described in General Motors Company Materials Specification GMW16445, Appendix B, side-by-side with a standard ASTM D471 test.
Journal Article

Scanning Frequency Ranges of Harmonic Response for a Spot-Welded Copper-Aluminum Plate Using Finite Element Method

2011-04-12
2011-01-1076
In this paper, a finite element methodology is given in which finite element models of a three-weld Al-Cu plate is created with support and loading conditions emulating those seen in an optical lab. Harmonic response is sought for the models under the presumption that various defective welds are present. The numerical results are carefully examined to determine the guideline frequency range so the actual optical experiment can be carried out more efficiently.
Journal Article

Determination of Weld Nugget Size Using an Inverse Engineering Technique

2013-04-08
2013-01-1374
In today's light-weight vehicles, the strength of spot welds plays an important role in overall product integrity, reliability and customer satisfaction. Naturally, there is a need for a quick and reliable technique to inspect the quality of the welds. In the past, the primary quality control tests for detecting weld defects are the destructive chisel test and peel test [1]. The non-destructive evaluation (NDE) method currently used in industry is based on ultrasonic inspection [2, 3, 4]. The technique is not always successful in evaluating the nugget size, nor is it effective in detecting the so-called “cold” or “stick” welds. Therefore, it is necessary to develop a precise and reliable noncontact NDE method for spot welds. There have been numerous studies in predicting the weld nugget size by considering the spot-weld process [5, 6].
Journal Article

Numerical Investigation of Buoyancy-Driven Flow in a Simplified Underhood with Open Enclosure

2013-04-08
2013-01-0842
Numerical results are presented for simulating buoyancy driven flow in a simplified full-scale underhood with open enclosure in automobile. The flow condition is set up in such a way that it mimics the underhood soak condition, when the vehicle is parked in a windbreak with power shut-down after enduring high thermal loads due to performing a sequence of operating conditions, such as highway driving and trailer-grade loads in a hot ambient environment. The experimental underhood geometry, although simplified, consists of the essential components in a typical automobile underhood undergoing the buoyancy-driven flow condition. It includes an open enclosure which has openings to the surrounding environment from the ground and through the top hood gap, an engine block and two exhaust cylinders mounted along the sides of the engine block. The calculated temperature and velocity were compared with the measured data at different locations near and away from the hot exhaust plumes.
X