Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Occupant Preferred Back Angle Relative to Head Restraint Regulations

2010-04-12
2010-01-0779
Having, by now, introduced several new vehicles that comply with FMVSS 202a, manufacturers are reporting an increased number of complaints from consumers who find that the head restraint is too close; negatively affecting their posture. It is speculated that one of the reasons that head restraints meeting the new requirement are problematic is that the FMVSS backset measurement is performed at a back angle that is more reclined than the back angle most drivers choose and the back angle at which the seat / vehicle was designed. The objective of this paper is to confirm this hypothesis and elaborate on implications for regulatory compliance in FMVSS 202a.
Journal Article

Drawbead Restraining Force Modeling with Anisotropic Hardening

2010-04-12
2010-01-0983
A detailed investigation of the influence of anisotropic hardening models on drawbead restraining force is presented in this paper. The recently modified Yoshida model is adopted to characterize the anisotropic hardening behavior for steels. A two-dimensional drawbead model is used and the restraining forces corresponding to several different bead penetrations are obtained and compared against experimental results. The comparison of the predicted results for the Modified Yoshida Model with isotropic hardening models indicates that the anisotropic hardening gives lower drawbead restraining forces in general. The impact of hardening models on springback is also presented, and it's demonstrated that the springback amount predicted by the modified Yoshida model is much closer to the experimental data than that predicted by conventional isotropic hardening model.
Journal Article

Deformation Analysis of Incremental Sheet Forming

2010-04-12
2010-01-0991
Incremental Sheet Forming (ISF) is an emerging sheet metal prototyping technology where a part is formed as one or more stylus tools are moving in a pre-determined path and deforming the sheet metal locally while the sheet blank is clamped along its periphery. A deformation analysis of incremental forming process is presented in this paper. The analysis includes the development of an analytical model for strain distributions based on part geometry and tool paths; and numerical simulations of the forming process with LS-DYNA. A skew cone is constructed and used as an example for the study. Analytical and numerical results are compared, and excellent correlations are found. It is demonstrated that the analytical model developed in this paper is reliable and efficient in the prediction of strain distributions for incremental forming process.
Journal Article

Finite Element Modeling of Dissimilar Metal Self-piercing Riveting Process

2014-04-01
2014-01-1982
In present paper, the process of joining aluminum alloy 6111T4 and steel HSLA340 sheets by self-piercing riveting (SPR) is studied. The rivet material properties were obtained by inverse modeling approach. Element erosion technique was adopted in the LS-DYNA/explicit analysis for the separation of upper sheet before the rivet penetrates into lower sheet. Maximum shear strain criterion was implemented for material failure after comparing several classic fracture criteria. LS-DYNA/implicit was used for springback analysis following the explicit riveting simulation. Large compressive residual stress was observed near frequent fatigue crack initiation sites, both around vicinity of middle inner wall of rivet shank and upper 6111T4 sheet.
Journal Article

A Copula-Based Approach for Model Bias Characterization

2014-04-01
2014-01-0735
Available methodologies for model bias identification are mainly regression-based approaches, such as Gaussian process, Bayesian inference-based models and so on. Accuracy and efficiency of these methodologies may degrade for characterizing the model bias when more system inputs are considered in the prediction model due to the curse of dimensionality for regression-based approaches. This paper proposes a copula-based approach for model bias identification without suffering the curse of dimensionality. The main idea is to build general statistical relationships between the model bias and the model prediction including all system inputs using copulas so that possible model bias distributions can be effectively identified at any new design configurations of the system. Two engineering case studies whose dimensionalities range from medium to high will be employed to demonstrate the effectiveness of the copula-based approach.
Journal Article

Modeling of an Advanced Steering Wheel and Column Assembly for Frontal and Side Impact Simulations

2014-04-01
2014-01-0803
This paper presents the final phase of a study to develop the modeling methodology for an advanced steering assembly with a safety-enhanced steering wheel and an adaptive energy absorbing steering column. For passenger cars built before the 1960s, the steering column was designed to control vehicle direction with a simple rigid rod. In severe frontal crashes, this type of design would often be displaced rearward toward the driver due to front-end crush of the vehicle. Consequently, collapsible, detachable, and other energy absorbing steering columns emerged to address this type of kinematics. These safety-enhanced steering columns allow frontal impact energy to be absorbed by collapsing or breaking the steering columns, thus reducing the potential for rearward column movement in severe crashes. Recently, more advanced steering column designs have been developed that can adapt to different crash conditions including crash severity, occupant mass/size, seat position, and seatbelt usage.
Journal Article

Hot Stamping of a B-Pillar Outer from High Strength Aluminum Sheet AA7075

2014-04-01
2014-01-0981
This work demonstrates the feasibility of hot stamping a B-pillar outer panel from aluminum alloy 7075. AA7075 is characterized by a high strength to weight ratio with yield strengths comparable to those of DP and TRIP advanced high strength steels. Applications using AA7075 have typically been limited to the aerospace industry due to the high variable cost associated with forming and joining of these materials. A primary key to implementation in the automotive industry is the development of metal forming methods that produce non-compromised stamped parts at automotive manufacturing volumes and costs. This work explores the feasibility of die quenching a hot blank within a cold die as a means of delivering high strength aluminum sheet parts. A die made from kirksite was used to evaluate the hot stamping process for a B-pillar outer. After the forming/quenching operation, the parts were subjected to an artificial aging process to regain the properties of the T6-temper.
Journal Article

An Investigation of the Effects of Cast Skin on the Mechanical Properties of an AM60 Die-Cast Magnesium Alloy

2015-04-14
2015-01-0510
Magnesium die-cast alloys are known to have a layered microstructure composed of: (1) An outer skin layer characterized by a refined microstructure that is relatively defect-free; and (2) A “core” (interior) layer with a coarser microstructure having a higher concentration of features such as porosity and externally solidified grains (ESGs). Because of the difference in microstructural features, it has been long suggested that removal of the surface layer by machining could result in reduced mechanical properties in tested tensile samples. To examine the influence of the skin layer on the mechanical properties, a series of round tensile bars of varying diameters were die-cast in a specially-designed mold using the AM60 Mg alloy. A select number of the samples were machined to different final diameters. Subsequently, all of the samples (as-cast as well as machined) were tested in tension.
Journal Article

A Fatigue Life Prediction Method of Laser Assisted Self-Piercing Rivet Joint for Magnesium Alloys

2015-04-14
2015-01-0537
Due to magnesium alloy's poor weldability, other joining techniques such as laser assisted self-piercing rivet (LSPR) are used for joining magnesium alloys. This research investigates the fatigue performance of LSPR for magnesium alloys including AZ31 and AM60. Tensile-shear and coach peel specimens for AZ31 and AM60 were fabricated and tested for understanding joint fatigue performance. A structural stress - life (S-N) method was used to develop the fatigue parameters from load-life test results. In order to validate this approach, test results from multijoint specimens were compared with the predicted fatigue results of these specimens using the structural stress method. The fatigue results predicted using the structural stress method correlate well with the test results.
Journal Article

Influence of Test Procedure on Friction Behavior and its Repeatability in Dynamometer Brake Performance Testing

2014-09-28
2014-01-2521
The efforts of the ISO “Test Variability Task Force” have been aimed at improving the understanding and at reducing brake dynamometer test variability during performance testing. In addition, dynamometer test results have been compared and correlated to vehicle testing. Even though there is already a vast amount of anecdotal evidence confirming the fact that different procedures generate different friction coefficients on the same brake corner, the availability of supporting data to the industry has been elusive up to this point. To overcome this issue, this paper focuses on assessing friction levels, friction coefficient sensitivity, and repeatability under ECE, GB, ISO, JASO, and SAE laboratory friction evaluation tests.
Journal Article

Towards an Optimum Aftertreatment System Architecture

2015-01-14
2015-26-0104
Aftertreatment system design involves multiple tradeoffs between engine performance, fuel economy, regulatory emission levels, packaging, and cost. Selection of the best design solution (or “architecture”) is often based on an assumption that inherent catalyst activity is unaffected by location within the system. However, this study acknowledges that catalyst activity can be significantly impacted by location in the system as a result of varying thermal exposure, and this in turn can impact the selection of an optimum system architecture. Vehicle experiments with catalysts aged over a range of mild to moderate to severe thermal conditions that accurately reflect select locations on a vehicle were conducted on a chassis dynamometer. The vehicle test data indicated CO and NOx could be minimized with a catalyst placed in an intermediate location.
Journal Article

Development of an Improved Cosmetic Corrosion Test for Finished Aluminum Autobody Panels

2008-04-14
2008-01-1156
A task group within the SAE Automotive Corrosion and Protection (ACAP) Committee continues to pursue the goal of establishing a standard test method for in-laboratory cosmetic corrosion evaluations of finished aluminum auto body panels. The program is a cooperative effort with OEM, supplier, and consultant participation and is supported in part by USAMP (AMD 309) and the U.S. Department of Energy. Numerous laboratory corrosion test environments have been used to evaluate the performance of painted aluminum closure panels, but correlations between laboratory test results and in-service performance have not been established. The primary objective of this project is to identify an accelerated laboratory test method that correlates with in-service performance. In this paper the type, extent, and chemical nature of cosmetic corrosion observed in the on-vehicle exposures are compared with those from some of the commonly used laboratory tests
Journal Article

Real-time Tire Imbalance Detection Using ABS Wheel Speed Sensors

2011-04-12
2011-01-0981
This paper proposes an approach to use ABS wheel speed sensor signals together with other vehicle state information from a brake control module to detect an unbalanced tire or tires in real-time. The proposed approach consists of two-stage algorithms that mix a qualitative method using band-pass filtering with a quantitative parameter identification using conditional least squares. This two-stage approach can improve the robustness of tire imbalance or imbalances. The proposed approach is verified through vehicle testing and the test results show the effectiveness of the approach.
Journal Article

Optimization Strategies to Explore Multiple Optimal Solutions and Its Application to Restraint System Design

2012-04-16
2012-01-0578
Design optimization techniques are widely used to drive designs toward a global or a near global optimal solution. However, the achieved optimal solution often appears to be the only choice that an engineer/designer can select as the final design. This is caused by either problem topology or by the nature of optimization algorithms to converge quickly in local/global optimal or both. Problem topology can be unimodal or multimodal with many local and/or global optimal solutions. For multimodal problems, most global algorithms tend to exploit the global optimal solution quickly but at the same time leaving the engineer with only one choice of design. The paper explores the application of genetic algorithms (GA), simulated annealing (SA), and mixed integer problem sequential quadratic programming (MIPSQP) to find multiple local and global solutions using single objective optimization formulation.
Technical Paper

Service Bay Diagnostic System

1986-10-20
861030
The Service Bay Diagnostic System (SBDS) will be designed to assist the dealership technician in diagnosing and repairing Ford Motor vehicles. The system hardware will be configured around a Service Bay Computer with mass storage capability and auxiliary service equipment. Major system features include: guided service writer/customer interaction, interactive vehicle diagnostics, information management. capabilities, and an additional aid to identifying intermittent failures through the use of a portable over-the-road data acquisition device. In order to assist the technician in properly diagnosing the causal factor, the Service Bay Computer System will also be enhanced through the use of an expert system knowledge base.
Technical Paper

Ford's All New 4.6 Liter SOHC V-8 Engine for the Lincoln Town Car

1991-02-01
910680
Ford is introducing the first high volume domestically designed and produced overhead camshaft V-8 engine As the first entry of a family of V-8 engines, the 4.6L 2 valve per cylinder engine was created to replace Ford's work-horse small block V-8 family of pushrod engines. That family of engines was first produced in 1962 in a 221 cu. in. version and have since evolved into the 302 cu. in. (5.0L) engine which previously powered the Town Car. Design goals of the engine family were: Higher horsepower output combined with reduced engine displacement Improved fuel efficiency and reduced emissions Reduced noise and vibration Advanced technology Precision manufacturing Improved quality and durability Program Execution was accomplished by extensive use of teamwork processes, including Cross Functional Teams (CFTs) among Design Engineering, Manufacturing Engineering, Suppliers, Purchasing and Vehicle Engineering.
Technical Paper

A Predictive Process for Spring Failure Rates in Automotive Parts Applications

1991-02-01
910356
This paper discusses an analytical technique for computing the failure rate of steel springs used in automotive part applications. Preliminary computations may be performed and used to predict spring failure rates quickly at a very early stage of a product development cycle and to establish program reliability impact before commitment. The analytical method is essentially a combination of various existing procedures that are logically sequenced to compute a spring probability of failure under various operational conditions. Fatigue life of a mechanical component can be computed from its S-N curve. For steels, the S-N curve can be approximated by formulae which describe the fatigue life as a function of its endurance limit and its alternating stress. Most springs in service are preloaded and the actual stress fluctuates about a mean level. In order to compute an equivalent alternating stress with zero mean, an analytical method based on the Goodman Diagram is used.
Journal Article

Crash Performance Simulation of a Multilayer Thermoplastic Fuel Tank with Manufacturing and Assembly Consideration

2011-04-12
2011-01-0009
The modeling of plastic fuel tank systems for crash safety applications has been very challenging. The major challenges include the prediction of fuel sloshing in high speed impact conditions, the modeling of multilayer thermoplastic fuel tanks with post-forming (non-uniform) material properties, and the modeling of tank straps with pre-tensions. Extensive studies can be found in the literature to improve the prediction of fuel sloshing. However, little research had been conducted to model the post-forming fuel tank and to address the tension between the fuel tank and the tank straps for crash safety simulations. Hoping to help improve the modeling of fuel systems, the authors made the first attempt to tackle these major challenges all at once in this study by dividing the modeling of the fuel tank into eight stages. An ALE (Arbitrary Lagrangian-Eulerian) method was adopted to simulate the interaction between the fuel and the tank.
Journal Article

Cosmetic Corrosion Test for Aluminum Autobody Panels: Final Report

2010-04-12
2010-01-0726
Over the past several years a task group within the SAE Automotive Corrosion and Protection (ACAP) Committee has conducted extensive on-vehicle field testing and numerous accelerated lab tests with the goal of establishing a standard accelerated test method for cosmetic corrosion evaluations of finished aluminum auto body panels. This project has been a cooperative effort with OEM, supplier, and consultant participation and was also supported in part by DOE through USAMP (AMD 309). The focus of this project has been the identification of a standardized accelerated cosmetic corrosion test that exhibits the same appearance, severity, and type of corrosion products that are exhibited on identical painted aluminum panels exposed to service relevant environments. Multi-year service relevant exposures were conducted by mounting panels on-vehicles in multiple locations in the US and Canada.
Technical Paper

Optimization of the Monitored Volume for LEV Catalyst Monitoring

1997-10-13
972847
A model of Ford's current FTP based OBD-II catalyst monitor has been developed and used in determining the optimal monitored catalyst volume for several LEV applications. The model predictions were found to agree reasonably well with the available experimental data. Furthermore, the results of this study indicate that the optimal monitored catalyst volume for meeting LEV requirements is vehicle application specific. As a result, it is concluded that a general guideline for sizing of the monitored catalyst volume for LEVs will most likely be inadequate and could result in grossly suboptimal catalyst monitor function for some applications. The model which is described in this paper offers a potentially more effective means of determining the best monitored catalyst volume for a given vehicle application. It should be possible to utilize this model during the early phase of a vehicle program in order to provide for the optimal packaging of the catalyst monitor sensor (CMS).
X