Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Exhaust Valve & Valve Seat Insert – Development for an Industrial LPG Application

2009-05-13
2009-01-1602
Automotive engines are regularly utilized in the material handling market where LPG is often the primary fuel used. When compared to gasoline, the use of gaseous fuels (LPG and CNG) as well as alcohol based fuels, often result in significant increases in valve seat insert (VSI) and valve face wear. This phenomenon is widely recognized and the engine manufacturer is tasked to identify and incorporate appropriate valvetrain material and design features that can meet the ever increasing life expectations of the end-user. Alternate materials are often developed based on laboratory testing – testing that may not represent real world usage. The ultimate goal of the product engineer is to utilize accelerated lab test procedures that can be correlated to field life and field failure mechanisms, and then select appropriate materials/design features that meet the targeted life requirements.
Journal Article

Occupant Preferred Back Angle Relative to Head Restraint Regulations

2010-04-12
2010-01-0779
Having, by now, introduced several new vehicles that comply with FMVSS 202a, manufacturers are reporting an increased number of complaints from consumers who find that the head restraint is too close; negatively affecting their posture. It is speculated that one of the reasons that head restraints meeting the new requirement are problematic is that the FMVSS backset measurement is performed at a back angle that is more reclined than the back angle most drivers choose and the back angle at which the seat / vehicle was designed. The objective of this paper is to confirm this hypothesis and elaborate on implications for regulatory compliance in FMVSS 202a.
Journal Article

Deformation Analysis of Incremental Sheet Forming

2010-04-12
2010-01-0991
Incremental Sheet Forming (ISF) is an emerging sheet metal prototyping technology where a part is formed as one or more stylus tools are moving in a pre-determined path and deforming the sheet metal locally while the sheet blank is clamped along its periphery. A deformation analysis of incremental forming process is presented in this paper. The analysis includes the development of an analytical model for strain distributions based on part geometry and tool paths; and numerical simulations of the forming process with LS-DYNA. A skew cone is constructed and used as an example for the study. Analytical and numerical results are compared, and excellent correlations are found. It is demonstrated that the analytical model developed in this paper is reliable and efficient in the prediction of strain distributions for incremental forming process.
Journal Article

A Copula-Based Approach for Model Bias Characterization

2014-04-01
2014-01-0735
Available methodologies for model bias identification are mainly regression-based approaches, such as Gaussian process, Bayesian inference-based models and so on. Accuracy and efficiency of these methodologies may degrade for characterizing the model bias when more system inputs are considered in the prediction model due to the curse of dimensionality for regression-based approaches. This paper proposes a copula-based approach for model bias identification without suffering the curse of dimensionality. The main idea is to build general statistical relationships between the model bias and the model prediction including all system inputs using copulas so that possible model bias distributions can be effectively identified at any new design configurations of the system. Two engineering case studies whose dimensionalities range from medium to high will be employed to demonstrate the effectiveness of the copula-based approach.
Journal Article

Development of an Improved Cosmetic Corrosion Test for Finished Aluminum Autobody Panels

2008-04-14
2008-01-1156
A task group within the SAE Automotive Corrosion and Protection (ACAP) Committee continues to pursue the goal of establishing a standard test method for in-laboratory cosmetic corrosion evaluations of finished aluminum auto body panels. The program is a cooperative effort with OEM, supplier, and consultant participation and is supported in part by USAMP (AMD 309) and the U.S. Department of Energy. Numerous laboratory corrosion test environments have been used to evaluate the performance of painted aluminum closure panels, but correlations between laboratory test results and in-service performance have not been established. The primary objective of this project is to identify an accelerated laboratory test method that correlates with in-service performance. In this paper the type, extent, and chemical nature of cosmetic corrosion observed in the on-vehicle exposures are compared with those from some of the commonly used laboratory tests
Journal Article

Pneumatic Brake Apply System Response and Aero-Acoustic Performance Considerations

2008-04-14
2008-01-0821
Over the past decade, the automotive industry has seen a rapid decrease in product development cycle time and an ever increasing need by original equipment manufacturers and their suppliers to differentiate themselves in the marketplace. This differentiation is increasingly accomplished by introducing new technology while continually improving the performance of existing automotive systems. In the area of automotive brake system design, and, in particular, the brake apply subsystem, an increased focus has been placed on the development of electrohydraulic apply systems and brake-by-wire systems to replace traditional pneumatic and hydraulic systems. Nevertheless, the traditional brake apply systems, especially vacuum-based or pneumatic systems, will continue to represent the majority of brake apply system production volume into the foreseeable future, which underscores the need to improve the performance and application of these traditional systems in passenger cars and light-trucks.
Journal Article

Safety Analysis of Software-intensive Motion Control Systems

2009-04-20
2009-01-0756
The auto industry has had decades of experience with designing safe vehicles. The introduction of highly integrated features brings new challenges that require innovative adaptations of existing safety methodologies and perhaps even some completely new concepts. In this paper, we describe some of the new challenges that will be faced by all OEMs and suppliers. We also describe a set of generic top-level potential hazards that can be used as a starting point for the Preliminary Hazard Analysis (PHA) of a vehicle software-intensive motion control system. Based on our experience with the safety analysis of a system of this kind, we describe some general categories of hazard causes that are considered for software-intensive systems and can be used systematically in developing the PHA.
Technical Paper

Ford's All New 4.6 Liter SOHC V-8 Engine for the Lincoln Town Car

1991-02-01
910680
Ford is introducing the first high volume domestically designed and produced overhead camshaft V-8 engine As the first entry of a family of V-8 engines, the 4.6L 2 valve per cylinder engine was created to replace Ford's work-horse small block V-8 family of pushrod engines. That family of engines was first produced in 1962 in a 221 cu. in. version and have since evolved into the 302 cu. in. (5.0L) engine which previously powered the Town Car. Design goals of the engine family were: Higher horsepower output combined with reduced engine displacement Improved fuel efficiency and reduced emissions Reduced noise and vibration Advanced technology Precision manufacturing Improved quality and durability Program Execution was accomplished by extensive use of teamwork processes, including Cross Functional Teams (CFTs) among Design Engineering, Manufacturing Engineering, Suppliers, Purchasing and Vehicle Engineering.
Journal Article

Cosmetic Corrosion Test for Aluminum Autobody Panels: Final Report

2010-04-12
2010-01-0726
Over the past several years a task group within the SAE Automotive Corrosion and Protection (ACAP) Committee has conducted extensive on-vehicle field testing and numerous accelerated lab tests with the goal of establishing a standard accelerated test method for cosmetic corrosion evaluations of finished aluminum auto body panels. This project has been a cooperative effort with OEM, supplier, and consultant participation and was also supported in part by DOE through USAMP (AMD 309). The focus of this project has been the identification of a standardized accelerated cosmetic corrosion test that exhibits the same appearance, severity, and type of corrosion products that are exhibited on identical painted aluminum panels exposed to service relevant environments. Multi-year service relevant exposures were conducted by mounting panels on-vehicles in multiple locations in the US and Canada.
Technical Paper

Optimization of the Monitored Volume for LEV Catalyst Monitoring

1997-10-13
972847
A model of Ford's current FTP based OBD-II catalyst monitor has been developed and used in determining the optimal monitored catalyst volume for several LEV applications. The model predictions were found to agree reasonably well with the available experimental data. Furthermore, the results of this study indicate that the optimal monitored catalyst volume for meeting LEV requirements is vehicle application specific. As a result, it is concluded that a general guideline for sizing of the monitored catalyst volume for LEVs will most likely be inadequate and could result in grossly suboptimal catalyst monitor function for some applications. The model which is described in this paper offers a potentially more effective means of determining the best monitored catalyst volume for a given vehicle application. It should be possible to utilize this model during the early phase of a vehicle program in order to provide for the optimal packaging of the catalyst monitor sensor (CMS).
Technical Paper

Oscillating Heat Transfer in Reversing Pipe Flow

1998-02-23
980061
Oscillating heat transfer is a fundamental phenomenon occurring in Stirling machines and IC engines. A group of relevant dimensionless numbers which characterize this problem is identified by dimensional analysis. The convective heat transfer coefficient, or Nusselt number, is a function of the Reynolds number, the Prandtl number, plus the dynamic Reynolds number and the dimensionless amplitude, when compressibility is not considered. The case for compressible fluid is more complicated. An experiential study confirms above analysis and results in a nonlinear longitudinal fluid temperature distribution in the pipe. The history effect is found to affect the heat transfer rate remarkably. A correlation equation for Nusselt number is obtained by multivariate analysis.
Technical Paper

SAE Standard Procedure J2747 for Measuring Hydraulic Pump Airborne Noise

2007-05-15
2007-01-2408
This work discusses the development of SAE procedure J2747, “Hydraulic Pump Airborne Noise Bench Test”. This is a test procedure describing a standard method for measuring radiated sound power levels from hydraulic pumps of the type typically used in automotive power steering systems, though it can be extended for use with other types of pumps. This standard was developed by a committee of industry representatives from OEM's, suppliers and NVH testing firms familiar with NVH measurement requirements for automotive hydraulic pumps. Details of the test standard are discussed. The hardware configuration of the test bench and the configuration of the test article are described. Test conditions, data acquisition and post-processing specifics are also included. Contextual information regarding the reasoning and priorities applied by the development committee is provided to further explain the strengths, limitations and intended usage of the test procedure.
Technical Paper

Accelerated Glass Reveal Molding Test

1998-02-23
980718
Over the past 20 years, polyvinyl chloride (PVC) has almost replaced metal in stationary glass reveal moldings with dramatic part cost savings on cars and trucks world-wide. The process of assembly is generally simple and convenient but to replace a reveal molding can be difficult. Many times, in order to replace the molding, it may also be necessary to replace or reseal the glass. In short, PVC reveal moldings, relatively inexpensive parts, are very expensive to service. Outside of general assembly and processing issues, there are 5 variables that may cause a failure in the performance of a stationary glass reveal molding. They are as follows: material degradation, crystallization, plasticizer loss, material properties, and molded-in stress. Because of modern standard PVC formulations and the material requirements of most automotive companies, material degradation, crystallization and plasticizer loss do not commonly cause failure. Material properties and molded-in stress do.
Technical Paper

Dynamic Moving Mesh CFD Study of Semi-truck Passing a Stationary Vehicle with Hood Open

2007-04-16
2007-01-0111
This paper examines the aerodynamic forces on the open hood of a stationary vehicle when another large vehicle, such as an 18-wheel semi-truck, passes by at high speed. The problem of semi-truck passing a parked car with hood open is solved as a transient two-vehicle aerodynamics problem with a Dynamic Moving Mesh (DMM) capability in commercial CFD software package FLUENT. To assess the computational feasibility, a simplified compact car / semi-truck geometry and CFD meshes are used in the first trial example. At 70 mph semi-truck speed, the CFD results indicate a peak aerodynamic force level of 20N to 30N on the hood of the car, and the direction of the net forces and moments on the hood change multiple times during the passing event.
Technical Paper

Development of an Improved Cosmetic Corrosion Test for Finished Aluminum Autobody Panels

2007-04-16
2007-01-0417
Since 2000, an Aluminum Cosmetic Corrosion task group within the SAE Automotive Corrosion and Protection (ACAP) Committee has existed. The task group has pursued the goal of establishing a standard test method for in-laboratory cosmetic corrosion evaluations of finished aluminum auto body panels. A cooperative program uniting OEM, supplier, and consultants has been created and has been supported in part by USAMP (AMD 309) and the U.S. Department of Energy. Prior to this committee's formation, numerous laboratory corrosion test environments have been used to evaluate the performance of painted aluminum closure panels. However, correlations between these laboratory test results and in-service performance have not been established. Thus, the primary objective of this task group's project was to identify an accelerated laboratory test method that correlates well with in-service performance.
Technical Paper

Expanding the Application of Magnesium Components in the Automotive Industry: A Strategic Vision

2007-04-16
2007-01-1033
There is an increasing global realization about the need for fuel efficient vehicles. An inexpensive way to accomplish this is through mass reduction, and one of the most effective ways that this can occur is through substituting current materials with magnesium, the lightest structural metal. This document describes the results of a U.S. Automotive Materials Partnership (USAMP) sponsored study [1] that examines why magnesium use has only grown 10% per year and identifies how to promote more widespread commercial applications beyond the 5-6 kg of component currently in vehicles. The issues and concerns which have limited magnesium use are discussed via a series of research and development themes. These address concerns associated with corrosion, fastening, and minimal metalworking/non-traditional casting processing. The automotive and magnesium supplier industries have only a limited ability to develop implementation-ready magnesium components.
Technical Paper

From Algorithms to Software - A Practical Approach to Model-Driven Design

2007-04-16
2007-01-1622
The value of model-based design has been attempted to be communicated for more than a decade. As methods and tools have appeared and disappeared from a series of different vendors it has become apparent that no single vendor has a solution that meets all users’ needs. Recently standards (UML, MDA, MOF, EMF, etc.) have become a dominant force and an alternative to vendor-specific languages and processes. Where these standards have succeeded and vendors have failed is in the realization that they do not provide the answer, but instead provide the foundation to develop the answer. It is in the utilization of these standards and their capability to be customized that companies have achieved success. Customization has occurred to fit organizations, processes, and architectures that leverage the value of model-driven design.
Technical Paper

Lead-time Reduction in Stamping CAE and Die Face Development using Massively Parallel Processing in Forming Simulations

2007-04-16
2007-01-1678
Since 1997, General Motors Body Manufacturing Engineering - Die Engineering Services (BME-DES) has been working jointly with our software vendor to develop and implement a parallel version of stamping simulation software for mass production analysis applications. The evolution of this technology and the insight gained through the implementation of DMP/MPP technology as well as performance benchmarks are discussed in this publication.
Technical Paper

Strategies for Managing Vehicle Mass throughout the Development Process and Vehicle Lifecycle

2007-04-16
2007-01-1721
Managing (minimizing and optimizing) the total mass of a vehicle is recognized as a critical task during the development of a new vehicle, as well as throughout its production lifecycle. This paper summarizes a literature review of, and investigation into, the strategies, methods and best practices for achieving low total mass in new vehicle programs, and/or mass reductions in existing production vehicle programs. Empirical and quantitative data and examples from the automotive manufacturers and suppliers are also provided in support of the material presented.
Technical Paper

TodayS Electronics in TodayS Vehicles

1998-10-19
98C028
Historically, the long development time required to produce a new automobile has meant that the electronics in that vehicle might lag the state-of-the-art by several years. For traditional vehicle electronics, this was certainly an appropriate delay, ensuring through extensive testing and qualification that the quality and reliability of the electronic systems met rigorous standards. However, with the growing consumer-oriented electronics content in today's vehicles, it is becoming more difficult for the automotive manufacturers to meet consumers' expectations with older technology. Couple this with the fast-paced consumer product cycle, typically nine to eighteen and the result is increasing pressure on the vehicle manufacturers from after-market electronics suppliers, who can update their product lines as fast as the component manufacturers can produce new models.
X