Refine Your Search

Topic

Author

Search Results

Journal Article

Modeling Forming Limit in Low Stress Triaxiality and Predicting Stretching Failure in Draw Simulation by an Improved Ductile Failure Criterion

2018-04-03
2018-01-0801
A ductile failure criterion (DFC), which defines the stretching failure at localized necking (LN) and treats the critical damage as a function of strain path and initial sheet thickness, was proposed in a previous study. In this study, the DFC is revisited to extend the model to the low stress triaxiality domain and demonstrates on modeling forming limit curve (FLC) of TRIP 690. Then, the model is used to predict stretching failure in a finite element method (FEM) simulation on a TRIP 690 steel rectangular cup draw process at room temperature. Comparison shows that the results from this criterion match quite well with experimental observations.
Journal Article

Development of a Lightweight Third-Generation Advanced High-Strength Steel (3GAHSS) Vehicle Body Structure

2018-04-03
2018-01-1026
This article covers an application of third-generation advanced high-strength steel (3GAHSS) grades to vehicle lightweight body structure development. Design optimization of a vehicle body structure using a multi-scale material model is discussed. The steps in the design optimization and results are presented. Results show a 30% mass reduction potential over a baseline mid-size sedan body side structure with the use of 3GAHSS.
Technical Paper

Springback Prediction and Correlations for Third Generation High Strength Steel

2020-04-14
2020-01-0752
Third generation advanced high strength steels (3GAHSS) are increasingly used in automotive for light weighting and safety body structure components. However, high material strength usually introduces higher springback that affects the dimensional accuracy. The ability to accurately predict springback in simulations is very important to reduce time and cost in stamping tool and process design. In this work, tension and compression tests were performed and the results were implemented to generate Isotropic/Kinematic hardening (I/KH) material models on a 3GAHSS steel with 980 MPa minimum tensile strength. Systematic material model parametric studies and evaluations have been conducted. Case studies from full-scale industrial parts are provided and the predicted springback results are compared to the measured springback data. Key variables affecting the springback prediction accuracy are identified.
Technical Paper

Interactive Effects between Sheet Steel, Lubricants, and Measurement Systems on Friction

2020-04-14
2020-01-0755
This study evaluated the interactions between sheet steel, lubricant and measurement system under typical sheet forming conditions using a fixed draw bead simulator (DBS). Deep drawing quality mild steel substrates with bare (CR), electrogalvanized (EG) and hot dip galvanized (HDG) coatings were tested using a fixed DBS. Various lubricant conditions were targeted to evaluate the coefficient of friction (COF) of the substrate and lubricant combinations, with only rust preventative mill oil (dry-0 g/m2 and 1 g/m2), only forming pre-lube (dry-0 g/m2, 1 g/m2, and >6 g/m2), and a combination of two, where mixed lubrication cases, with incremental amounts of a pre-lube applied (0.5, 1.0, 1.5 and 2.0 g/m2) over an existing base of 1 g/m2 mill oil, were analyzed. The results showed some similarities as well as distinctive differences in the friction behavior between the bare material and the coatings.
Technical Paper

Investigation of Fracture Behavior of Deep Drawn Automotive Part affected by Thinning with Shell Finite Elements

2020-04-14
2020-01-0208
In the recent decades, tremendous effort has been made in automotive industry to reduce vehicle mass and development costs for the purpose of improving fuel economy and building safer vehicles that previous generations of vehicles cannot match. An accurate modeling approach of sheet metal fracture behavior under plastic deformation is one of the key parameters affecting optimal vehicle development process. FLD (Forming Limit Diagram) approach, which plays an important role in judging forming severity, has been widely used in forming industry, and localized necking is the dominant mechanism leading to fracture in sheet metal forming and crash events. FLD is limited only to deal with the onset of localized necking and could not predict shear fracture. Therefore, it is essential to develop accurate fracture criteria beyond FLD for vehicle development.
Technical Paper

Edge-Quality Effects on Mechanical Properties of Stamped Non-Oriented Electrical Steel

2020-04-14
2020-01-1072
The market for electric vehicles and hybrid electric vehicles is expected to grow in the coming years, which is increasing interest in design optimization of electric motors for automotive applications. Under demanding duty cycles, the moving part within a motor, the rotor, may experience varying stresses induced by centrifugal force, a necessary condition for fatigue. Rotors contain hundreds of electrical steel laminations produced by stamping, which creates a characteristic edge structure comprising rollover, shear and tear zones, plus a burr. Fatigue properties are commonly reported with specimens having polished edges. Since surface condition is known to affect fatigue strength, an experiment was conducted to evaluate the effect of sample preparation on tensile and fatigue behavior of stamped specimens. Tensile properties were unaffected by polishing. In contrast, polishing was shown to increase fatigue strength by approximately 10-20% in the range of 105-107 cycles to failure.
Technical Paper

Structural Performance Comparison between 980MPa Generation 3 Steel and Press Hardened Steel Applied in the Body-in-White A and B-Pillar Parts

2020-04-14
2020-01-0537
Commercially available Generation 3 (GEN3) advanced high strength steels (AHSS) have inherent capability of replacing press hardened steels (PHS) using cold stamping processes. 980 GEN3 AHSS is a cold stampable steel with 980 MPa minimum tensile strength that exhibits an excellent combination of formability and strength. Hot forming of PHS requires elevated temperatures (> 800°C) to enable complex deep sections. 980 GEN3 AHSS presents similar formability as 590 DP material, allowing engineers to design complex geometries similar to PHS material; however, its cold formability provides implied potential process cost savings in automotive applications. The increase in post-forming yield strength of GEN3 AHSS due to work and bake hardening contributes strongly toward crash performance in energy absorption and intrusion resistance.
Technical Paper

Predicting Forming Limit Curve Using a New Ductile Failure Criterion

2017-03-28
2017-01-0312
Based on findings from micromechanical studies, a Ductile Failure Criterion (DFC) was proposed. The proposed DFC treats localized necking as failure and critical damage as a function of strain path and initial sheet thickness. Under linear strain path assumption, a method to predict Forming Limit Curve (FLC) is derived from this DFC. With the help of predetermined effect functions, the method only needs a calibration at uniaxial tension. The approach was validated by predicting FLCs for sixteen different aluminum and steel sheet metal materials. Comparison shows that the prediction matches quite well with experimental observations in most cases.
Technical Paper

Integrated Computational Materials Engineering (ICME) Multi-Scale Model Development for Advanced High Strength Steels

2017-03-28
2017-01-0226
This paper presents development of a multi-scale material model for a 980 MPa grade transformation induced plasticity (TRIP) steel, subject to a two-step quenching and partitioning heat treatment (QP980), based on integrated computational materials engineering principles (ICME Model). The model combines micro-scale material properties defined by the crystal plasticity theory with the macro-scale mechanical properties, such as flow curves under different loading paths. For an initial microstructure the flow curves of each of the constituent phases (ferrite, austenite, martensite) are computed based on the crystal plasticity theory and the crystal orientation distribution function. Phase properties are then used as an input to a state variable model that computes macro-scale flow curves while accounting for hardening caused by austenite transformation into martensite under different straining paths.
Technical Paper

Varying the Polyurethane Foam Ratio for Better Acoustic Performance and Mass Savings

2011-05-17
2011-01-1736
Flexible molded polyurethane foams are widely used in automotive industry. As porous-elastic materials, they can be used as decoupler layers in conventional sound insulation constructions or as sound absorbers in vehicle trim parts. Flexible molded polyurethane foams are produced by reacting of liquid Isocyanate (Iso) with a liquid Polyol blend, catalysts, and other additives. Their acoustic performance can be changed by varying the mixing ratio, the weight proportion of two components: Iso and Polyol. Consequently, the sound insertion loss (IL) of barrier/foam constructions and acoustic absorption of a single foam layer will vary. In this paper, based on one industry standard flexible molded polyurethane foam process, the relationship between foam mixing ratio and foam acoustic performance is studied in terms of IL and sound absorption test results.
Technical Paper

A Comprehensive Testing and Evaluation Approach for Autonomous Vehicles

2018-04-03
2018-01-0124
Performance testing and evaluation always plays an important role in the developmental process of a vehicle, which also applies to autonomous vehicles. The complex nature of an autonomous vehicle from architecture to functionality demands even more quality-and-quantity controlled testing and evaluation than ever before. Most of the existing testing methodologies are task-or-scenario based and can only support single or partial functional testing. These approaches may be helpful at the initial stage of autonomous vehicle development. However, as the integrated autonomous system gets mature, these approaches fall short of supporting comprehensive performance evaluation. This paper proposes a novel hierarchical and systematic testing and evaluation approach to bridge the above-mentioned gap.
Technical Paper

Tensile Material Properties of Fabrics for Vehicle Interiors from Digital Image Correlation

2013-04-08
2013-01-1422
Fabric materials have diverse applications in the automotive industry which include upholstery, carpeting, safety devices, and interior trim components. The textile industry has invested substantial effort toward development of standard testing techniques for characterizing mechanical properties of different fabric types (e.g. woven and knitted). However, there are presently no standards for determination of Young's modulus, Poisson's ratio and tensile stress-strain properties required for the detailed modeling of fabric materials in vehicle structural simulations. This paper presents results from uniaxial tensile tests of different automotive seat cover fabric materials. Digital image correlation, a full field optical method for measuring surface deformation, was used to determine tensile properties in both the warp/wale and the weft/course directions. The fabrics were tested with and without the foam backing.
Technical Paper

Prediction of Optimized Design Under Dynamic Loads Using Kriging Metamodel

2022-10-05
2022-28-0385
Stamped components play an important role in supporting various sub-systems within a typical engine and transmission assembly. In some cases, the stamped components will not initially meet the design criteria, and material may need to be added to strengthen it. However, in other cases the component may be overdesigned, and there will be opportunities to reduce mass while still meeting all design criteria. In this latter case, multiple CAE simulations are often performed to enhance the component design by varying design parameters such as thickness, bend radius, material, etc., The conventional process will assess changes in one parameter at a time, while holding other parameters constant. Though this helps in meeting the design criteria, it is often very difficult to produce the best optimized design within the limited time span with this approach. With the aid of Altair-HyperMorph techniques, multiple design parameters can be varied simultaneously.
Technical Paper

Numerical Study of Twist Spring-back Control with an Unbalanced Post-stretching Approach for Advanced High Strength Steel

2018-04-03
2018-01-0806
Twist spring-back would interfere with stamping or assembling procedures for advanced high strength steel. A “homeopathic” resolution for controlling the twist spring-back is proposed using unbalanced post-stretching configuration. Finite element forming simulation is applied to evaluate and compare the performance for each set of unbalanced post-stretching setup. The post-stretching is effectuated by stake bead application. The beads are separated into multiple independent segments, the height and radii of which can be adjusted individually and asymmetrically. Simulation results indicate that the twist spring-back can be effectively controlled by reducing the post-stretching proximate to the asymmetric part area. Its mechanism is qualitatively revealed by stress analyses, that an additional but acceptable cross-sectional spring-back re-balances the sprung asymmetrical geometry to counter the twist effect.
Technical Paper

Design and Control of Torque Feedback Device for Driving Simulator Based on MR Fluid and Coil Spring Structure

2018-04-03
2018-01-0689
Since steering wheel torque feedback is one of the crucial factors for drivers to gain road feel and ensure driving safety, it is especially important to simulate the steering torque feedback for a driving simulator. At present, steering wheel feedback torque is mainly simulated by an electric motor with gear transmission. The torque response is typically slow, which can result in drivers’ discomfort and poor driving maneuverability. This paper presents a novel torque feedback device with magnetorheological (MR) fluid and coil spring. A phase separation control method is also proposed to control its feedback torque, including spring and damping torques respectively. The spring torque is generated by coil spring, the angle of coil spring can be adjusted by controlling a brushless DC motor. The damping torque is generated by MR fluid, the damping coefficient of MR fluid can be adjusted by controlling the current of excitation coil.
Technical Paper

Lubrication Effects on Automotive Steel Friction between Bending under Tension and Draw Bead Test

2023-04-11
2023-01-0729
Zinc-based electrogalvanized (EG) and hot-dip galvanized (HDGI) coatings have been widely used in automotive body-in-white components for corrosion protection. The formability of zinc coated sheet steels depends on the properties of the sheet and the interactions at the interface between the sheet and the tooling. The frictional behavior of zinc coated sheet steels is influenced by the interfacial conditions present during the forming operation. Friction behavior has also been found to deviate from test method to test method. In this study, various lubrication conditions were applied to both bending under tension (BUT) test and a draw bead simulator (DBS) test for friction evaluations. Two different zinc coated steels; electrogalvanized (EG) and hot-dip galvanized (HDGI) were included in the study. In addition to the coated steels, a non-coated cold roll steel was also included for comparison purpose.
Technical Paper

Driving Behavior Prediction at Roundabouts Based on Integrated Simulation Platform

2018-04-03
2018-01-0033
Due to growing interest in automated driving, the need for better understanding of human driving behavior in uncertain environment, such as driving behavior at un-signalized crossroad and roundabout, has further increased. Driving behavior at roundabout is greatly influenced by different dynamic factors such as speed, distance and circulating flow of the potentially conflicting vehicles, and drivers should choose whether to leave or wait at the upcoming exit according to these factors. In this paper, the influential dynamic factors and driving behavior characteristics at the roundabout is analyzed in detail, random forest method is then deployed to predict the driving behavior. For training the driving behavior model, four typical roundabout layouts were created under a real-time driving simulator with PanoSim-RT and dSPACE. Traffic participants with different motion style were also set in the simulation platform to mimic real driving conditions.
Technical Paper

Investigation and Development of a Slip Model for a Basic Rigid Ring Ride Model

2018-04-03
2018-01-1116
With the recent advances in rapid modeling and rapid prototyping, accurate simulation models for tires are very desirable. Selection of a tire slip model depends on the required frequency range and nonlinearity associated with the dynamics of the vehicle. This paper presents a brief overview of three major slip concepts including “Stationary slip”, “Physical transient slip”, and “Pragmatic transient slip”; tire models use these slip concepts to incorporate tire slip behavior. The review illustrates that there can be no single accurate slip model which could be ideally used for all modes of vehicle dynamics simulations. For this study, a rigid ring based semi-analytical tire model for intermediate frequency (up to 100 Hz) is used.
Technical Paper

Initial Comparisons of Friction Stir Spot Welding and Self Piercing Riveting of Ultra-Thin Steel Sheet

2018-04-03
2018-01-1236
Due to the limitations on resistance spot welding of ultra-thin steel sheet (thicknesses below 0.5 mm) in high-volume automotive manufacturing, a comparison of friction stir spot welding and self-piercing riveting was performed to determine which process may be more amenable to enabling assembly of ultra-thin steel sheet. Statistical comparisons between mechanical properties of lap-shear tensile and T-peel were made in sheet thickness below 0.5 mm and for dissimilar thickness combinations. An evaluation of energy to fracture, fracture mechanisms, and joint consistency is presented.
X