Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

In-Use Emissions from Non-road Equipment for EPA Emissions Inventory Modeling (MOVES)

2010-10-05
2010-01-1952
Because of U.S. EPA regulatory actions and the National Academies National Research Council suggestions for improvements in the U.S. EPA emissions inventory methods, the U.S. EPA' Office of Transportation and Air Quality (OTAQ) has made a concerted effort to develop instrumentation that can measure criteria pollutant emissions during the operation of on-road and off-road vehicles. These instruments are now being used in applications ranging from snowmobiles to on-road passenger cars to trans-Pacific container ships. For the betterment of emissions inventory estimation these on-vehicle instruments have recently been employed to measure time resolved (1 hz) in-use gaseous emissions (CO₂, CO, THC, NO ) and particulate matter mass (with teflon membrane filter) emissions from 29 non-road construction vehicles (model years ranging from 1993 to 2007) over a three year period in various counties in Iowa, Missouri, and Kansas.
Journal Article

Emissions of PCDD/Fs, PCBs, and PAHs from a Modern Diesel Engine Equipped with Selective Catalytic Reduction Filters

2013-04-08
2013-01-1778
Exhaust emissions of seventeen 2,3,7,8-substituted chlorinated dibenzo-p-dioxin/furan (CDD/F) congeners, tetra-octa CDD/F homologues, twelve WHO 2005 chlorinated biphenyls (CB) congeners, mono-nona CB homologues, and nineteen polycyclic aromatic hydrocarbons (PAHs) from a model year 2008 Cummins ISB engine equipped with aftertreatment including a diesel oxidation catalyst (DOC) and wall flow copper or iron urea selective catalytic reduction filter (SCRF) were investigated. These systems differ from a traditional flow through urea selective catalytic reduction (SCR) catalyst because they place copper or iron catalyst sites in close proximity to filter-trapped particulate matter. These conditions could favor de novo synthesis of dioxins and furans. The results were compared to previously published results of modern diesel engines equipped with a DOC, catalyzed diesel particulate filter (CDPF) and flow through urea SCR catalyst.
Journal Article

Emissions Performance and In-Use Durability of Retrofit After-Treatment Technologies

2014-09-30
2014-01-2347
In-use testing of diesel emission control technologies is an integral component of EPA's verification program. Device manufacturers are required to complete in-use testing once 500 units have been sold. Additionally, EPA conducts test programs on randomly selected retrofit devices from installations completed with grants by the National Clean Diesel Campaign. In this test program, EPA identified and recovered a variety of retrofit devices, including diesel particulate filters (DPFs) and diesel oxidation catalysts (DOCs), installed on heavy-duty diesel vehicles (on-highway and nonroad). All of the devices were tested at Southwest Research Institute in San Antonio, Texas. This study's goal was to evaluate the durability, defined here as emissions performance as a function of time, of retrofit technologies aged in real-world applications. A variety of operating and emissions criteria were measured to characterize the overall performance of the retrofit devices on an engine dynamometer.
Journal Article

In-Situ Emissions Performance of EPA2010-Compliant On-Highway Heavy-Duty Diesel Engines

2013-09-24
2013-01-2430
Implementation of EPA's heavy-duty engine NOx standard of 0.20 g/bhp-hr has resulted in the introduction of a new generation of emission control systems for on-highway heavy-duty diesel engines. These new control systems are predominantly based around aftertreatment systems utilizing urea-based selective catalytic reduction (SCR) techniques, with only one manufacturer relying solely on in-cylinder NOx emission reduction techniques. As with any new technology, EPA is interested in evaluating whether these systems are delivering the expected emissions reductions under real-world conditions and where areas for improvement may lie. To accomplish these goals, an in-situ gaseous emissions measurement study was conducted using portable emissions measurement devices. The first stage of this study, and subject of this paper, focused on engines typically used in line-haul trucking applications (12-15L displacement).
Journal Article

Vehicle Component Benchmarking Using a Chassis Dynamometer

2015-04-14
2015-01-0589
The benchmarking study described in this paper uses data from chassis dynamometer testing to determine the efficiency and operation of vehicle driveline components. A robust test procedure was created that can be followed with no a priori knowledge of component performance, nor additional instrumentation installed in the vehicle. To develop the procedure, a 2013 Chevrolet Malibu was tested on a chassis dynamometer. Dynamometer data, emissions data, and data from the vehicle controller area network (CAN) bus were used to construct efficiency maps for the engine and transmission. These maps were compared to maps of the same components produced from standalone component benchmarking, resulting in a good match between results from in-vehicle and standalone testing. The benchmarking methodology was extended to a 2013 Mercedes E350 diesel vehicle. Dynamometer, emissions, and CAN data were used to construct efficiency maps and operation strategies for the engine and transmission.
Technical Paper

Effect of North American Certification Test Fuels on Emissions from On-Road Motorcycles

2021-09-21
2021-01-1225
Chassis dynamometer tests were conducted on three Class III on-highway motorcycles produced for the North American market and equipped with advanced emission control technologies in order to inform emissions inventories and compare the impacts of existing Tier 2 (E0) fuel with more market representative Tier 3 and LEV III certification fuels with 10% ethanol. For this study, the motorcycles were tested over the US Federal Test Procedure (FTP) and the World Motorcycle Test Cycle (WMTC) certification test cycles as well as a sample of real-world motorcycle driving informally referred to as the Real World Driving Cycle (RWDC). The primary interest was to understand the emissions changes of the selected motorcycles with the use of certification fuels containing 10% ethanol compared to 0% ethanol over the three test cycles.
Technical Paper

Comparison of the Particulate Matter Index and Particulate Evaluation Index Numbers Calculated by Detailed Hydrocarbon Analysis by Gas Chromatography (Enhanced ASTM D6730) and Vacuum Ultraviolet Paraffin, Isoparaffin, Olefin, Naphthene, and Aromatic Analysis (ASTM D8071)

2021-08-16
2021-01-5070
The Particulate Matter Index (PMI) is a tool that provides an indication of a fuel’s tendency to produce Particulate Matter (PM) emissions. Currently, the index is being used by various fuel laboratories and the Automotive OEMs as a tool to understand the gasoline fuel’s impact on both PM from engine hardware and vehicle-out emissions. In addition, a newer index that could be used to give an indication of the PM tendency of the gasoline range fuels, called the Particulate Evaluation Index (PEI), is shown to have a good correlation to PMI. The data used in those indices are collected from chemical analytical methods. This paper will compare gas chromatography (GC) methods used by three laboratories and discuss how the different techniques may affect the PMI and PEI calculation.
Technical Paper

Benchmarking a 2018 Toyota Camry UB80E Eight-Speed Automatic Transmission

2020-04-14
2020-01-1286
As part of the U.S. Environmental Protection Agency’s (EPA’s) continuing assessment of advanced light-duty automotive technologies in support of regulatory and compliance programs, a 2018 Toyota Camry front wheel drive eight-speed automatic transmission was benchmarked. The benchmarking data were used as inputs to EPA’s Advanced Light-duty Powertrain and Hybrid Analysis (ALPHA) vehicle simulation model to estimate GHG emissions from light-duty vehicles. ALPHA requires both detailed engine fuel consumption maps and transmission torque loss maps. EPA’s National Vehicle and Fuels Emissions Laboratory has developed a streamlined, cost-effective in-house method of transmission testing, capable of gathering a dataset sufficient to characterize transmissions within ALPHA. This testing methodology targets the range of transmission operation observed during vehicle testing over EPA’s city and highway drive cycles.
Technical Paper

Evaluating the Performance of a Conventional and Hybrid Bus Operating on Diesel and B20 Fuel for Emissions and Fuel Economy

2020-04-14
2020-01-1351
With ongoing concerns about the elevated levels of ambient air pollution in urban areas and the contribution from heavy-duty diesel vehicles, hybrid electric vehicles are considered as a potential solution as they are perceived to be more fuel efficient and less polluting than their conventional engine counterparts. However, recent studies have shown that real-world emissions may be substantially higher than those measured in the laboratory, mainly due to operating conditions that are not fully accounted for in dynamometer test cycles. At the U.S. EPA National Fuel and Vehicle Emissions Laboratory (NVFEL) the in-use criteria emissions and energy efficiency of heavy-duty class 8 vehicles (up to 36280 kg) can be evaluated under controlled conditions in the heavy-duty chassis dynamometer test.
Journal Article

Development and Testing of an Automatic Transmission Shift Schedule Algorithm for Vehicle Simulation

2015-04-14
2015-01-1142
The Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) tool was created by EPA to estimate greenhouse gas (GHG) emissions from light-duty (LD) vehicles [1]. ALPHA is a physics-based, forward-looking, full vehicle computer simulation capable of analyzing various vehicle types combined with different powertrain technologies. The software tool is a MATLAB/Simulink based desktop application. In order to model the behavior of current and future vehicles, an algorithm was developed to dynamically generate transmission shift logic from a set of user-defined parameters, a cost function (e.g., engine fuel consumption) and vehicle performance during simulation. This paper presents ALPHA's shift logic algorithm and compares its predicted shift points to actual shift points from a mid-size light-duty vehicle and to the shift points predicted using a static table-based shift logic as calibrated to the same vehicle during benchmark testing.
Journal Article

Characterizing Factors Influencing SI Engine Transient Fuel Consumption for Vehicle Simulation in ALPHA

2017-03-28
2017-01-0533
The U.S. Environmental Protection Agency’s (EPA’s) Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) tool was created to estimate greenhouse gas (GHG) emissions from light-duty vehicles. ALPHA is a physics-based, forward-looking, full vehicle computer simulation capable of analyzing various vehicle types with different powertrain technologies, showing realistic vehicle behavior, and auditing of all energy flows in the model. In preparation for the midterm evaluation (MTE) of the 2017-2025 light-duty GHG emissions rule, ALPHA has been refined and revalidated using newly acquired data from model year 2013-2016 engines and vehicles. The robustness of EPA’s vehicle and engine testing for the MTE coupled with further validation of the ALPHA model has highlighted some areas where additional data can be used to add fidelity to the engine model within ALPHA.
Journal Article

Experimental and Numerical Study of Flame Kernel Formation Processes of Propane-Air Mixture in a Pressurized Combustion Vessel

2016-04-05
2016-01-0696
Fuel lean combustion and exhaust gas dilution are known to increase the thermal efficiency and reduce NOx emissions. In this study, experiments are performed to understand the effect of equivalence ratio on flame kernel formation and flame propagation around the spark plug for different low turbulent velocities. A series of experiments are carried out for propane-air mixtures to simulate engine-like conditions. For these experiments, equivalence ratios of 0.7 and 0.9 are tested with 20 percent mass-based exhaust gas recirculation (EGR). Turbulence is generated by a shrouded fan design in the vicinity of J-spark plug. A closed loop feedback control system is used for the fan to generate a consistent flow field. The flow profile is characterized by using Particle Image Velocimetry (PIV) technique. High-speed Schlieren visualization is used for the spark formation and flame propagation.
Journal Article

Harmonizing and Rationalizing Lightweighting within Fuel Efficiency Regulations Across NA, EU and China

2017-03-28
2017-01-1297
This study emphasizes the fact that there lies value and potential savings in harmonizing some of the inherent differences between the USA, EU, and China regulations with respect to the role of vehicle mass and lightweighting within Fuel Economy (FE) and Green House Gas (GHG) regulations. The definition and intricacies of FE and mass regulations for the three regions (USA, EU, and China) have been discussed and compared. In particular, the nuances of footprint-based, curb-mass-based, and stepped-mass-based regulations that lead to the differences have been discussed. Lightweighting is a customer benefit for fuel consumption, but in this work, we highlight cases where lightweighting, as a CO2 enabler, has incentives that do not align with rational customer values. A typical vehicle’s FE performance sensitivity to a change in mass on the standard regional certification drive cycles is simulated and compared across the three regions.
Technical Paper

Motor Vehicle Emission Control Quality Monitoring for On-Road Driving: Dynamic Signature Recognition of NOx & NH3 Emissions

2020-04-14
2020-01-0372
Motor vehicle emission testing during on-road driving is important to assess a vehicle’s exhaust emission control design, its compliance with Federal regulations and its impact on air quality. The U.S. Environmental Protection Agency (EPA) has been developing new approaches to screen the characteristics of vehicle dynamic emission control behaviors (its operating signature) while driving both on-road and on-dynamometer. The so-called “signature device” used for this testing is equipped with an O2/NOx sensor, thermocouple and GPS to record dynamic exhaust NOx concentration, air fuel ratio-controlled tailpipe lambda (λ), tailpipe temperature and vehicle speed (acceleration). In the early EPA research, signature screening was used to characterize a vehicle’s PCM control behaviors (cause/effect bijectivity), which help distinguish operation in normal control state-space and abnormal state-space.
Journal Article

Study of High Speed Gasoline Direct Injection Compression Ignition (GDICI) Engine Operation in the LTC Regime

2011-04-12
2011-01-1182
An investigation of high speed direct injection (DI) compression ignition (CI) engine combustion fueled with gasoline (termed GDICI for Gasoline Direct-Injection Compression Ignition) in the low temperature combustion (LTC) regime is presented. As an aid to plan engine experiments at full load (16 bar IMEP, 2500 rev/min), exploration of operating conditions was first performed numerically employing a multi-dimensional CFD code, KIVA-ERC-Chemkin, that features improved sub-models and the Chemkin library. The oxidation chemistry of the fuel was calculated using a reduced mechanism for primary reference fuel combustion. Operation ranges of a light-duty diesel engine operating with GDICI combustion with constraints of combustion efficiency, noise level (pressure rise rate) and emissions were identified as functions of injection timings, exhaust gas recirculation rate and the fuel split ratio of double-pulse injections.
Journal Article

A Comparison of Spray-Guided Stratified-Charge Combustion Performance with Outwardly-Opening Piezo and Multi-Hole Solenoid Injectors

2011-04-12
2011-01-1217
This investigation was aimed at measuring the relative performance of two spray-guided, single-cylinder, spark-ignited direct-injected (SIDI) engine combustion system designs. The first utilizes an outwardly-opening poppet, piezo-actuated injector, and the second a conventional, solenoid operated, inwardly-opening multi-hole injector. The single-cylinder engine tests were limited to steady state, warmed-up conditions. The comparison showed that these two spray-guided combustion systems with two very different sprays had surprisingly close results and only differed in some details. Combustion stability and smoke emissions of the systems are comparable to each other over most of the load range. Over a simulated Federal Test Procedure (FTP) cycle, the multi-hole system had 15% lower hydrocarbon and 18% lower carbon monoxide emissions.
Journal Article

Revised ISO 10844 Test Surface: Technical Principles

2011-05-17
2011-01-1607
ISO has revised the 10844 International Standard for test surfaces used in measurement of exterior vehicle and tire noise emission. The revision has a goal to reduce the track to track sound level variation presently observed by 50%, without changing the mean value. ISO has incorporated improved texture measurement procedures, improved acoustic absorption measurement procedures, and has added measurement procedures for track roughness. In addition, specifications for texture, absorption, roughness, planarity, and asphalt mix were revised or added to recognize improved technical methods and to achieve the goal of variation reduction. The specification development was supported by a construction program where four candidate ISO 10844 tracks were constructed in Japan, France, and the US to verify the technical principles and to validate construction process capability. This paper will address the technical changes and reasons for these changes in the revised ISO 10844.
Journal Article

Analysis of Particle Mass and Size Emissions from a Catalyzed Diesel Particulate Filter during Regeneration by Means of Actual Injection Strategies in Light Duty Engines

2011-09-11
2011-24-0210
The diesel particulate filters (DPF) are considered the most robust technologies for particle emission reduction both in terms of mass and number. On the other hand, the increase of the backpressure in the exhaust system due to the accumulation of the particles in the filter walls leads to an increase of the engine fuel consumption and engine power reduction. To limit the filter loading, and the backpressure, a periodical regeneration is needed. Because of the growing interest about particle emission both in terms of mass, number and size, it appears important to monitor the evolution of the particle mass and number concentrations and size distribution during the regeneration of the DPFs. For this matter, in the presented work the regeneration of a catalyzed filter was fully analyzed. Particular attention was dedicated to the dynamic evolution both of the thermodynamic parameters and particle emissions.
Journal Article

The Key Role of the Closed-loop Combustion Control for Exploiting the Potential of Biodiesel in a Modern Diesel Engine for Passenger Car Applications

2011-06-09
2011-37-0005
The present paper describes the results of a cooperative research project between GM Powertrain Europe and Istituto Motori - CNR aimed at studying the capability of GM Combustion Closed-Loop Control (CLCC) in enabling seamless operation with high biodiesel blending levels in a modern diesel engine for passenger car applications. As a matter of fact, fuelling modern electronically-controlled diesel engines with high blends of biodiesel leads to a performance reduction of about 12-15% at rated power and up to 30% in the low-end torque, while increasing significantly the engine-out NOx emissions. These effects are both due to the interaction of the biodiesel properties with the control logic of the electronic control unit, which is calibrated for diesel operation. However, as the authors previously demonstrated, if engine calibration is re-tuned for biodiesel fuelling, the above mentioned drawbacks can be compensated and the biodiesel environmental inner qualities can be fully deployed.
Journal Article

Determination of the PEMS Measurement Allowance for PM Emissions Regulated Under the Heavy-Duty Diesel Engine In-Use Testing Program

2012-04-16
2012-01-1250
This paper summarizes the Heavy-Duty In-Use Testing (HDUIT) measurement allowance program for Particulate Matter Portable Emissions Measurement Systems (PM-PEMS). The measurement allowance program was designed to determine the incremental error between PM measurements using the laboratory constant volume sampler (CVS) filter method and in-use testing with a PEMS. Two independent PM-PEMS that included the Sensors Portable Particulate Measuring Device (PPMD) and the Horiba Transient Particulate Matter (TRPM) were used in this program. An additional instrument that included the AVL Micro Soot Sensor (MSS) was used in conjunction with the Sensors PPMD to be considered a PM-PEMS. A series of steady state and transient tests were performed in a 40 CFR Part 1065 compliant engine dynamometer test cell using a 2007 on-highway heavy-duty diesel engine to quantify the accuracy and precision of the PEMS in comparison with the CVS filter-based method.
X